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1 Data Exploration 
 
What makes Geographic Information Systems (GIS) unique is the ability to link data to spatial 
locations and query and summarize these data based on specific analysis requirements. 
Functionally, GIS provides a sophisticated tool for reporting the results of a database. These 
reports may be for an entire dataset (or table) or for a portion of the dataset (e.g., based on the 
results of a query or data summary).  These ‘data reports’ can take the form of tabular summaries, 
graphs and maps.  The following module will teach you about the different types of data and how to 
select and query the information within a database. In addition, the types of reports that can be 
generated are detailed. This module will examine data exploration in the following four topics: 
 

Topic 1:  Data attributes 
Topic 2:  Querying and selecting vector data  
Topic 3:  Querying and selecting raster data 
Topic 4:  Summarizing and interpreting data 
 

It should be noted that many of the subtopics discussed detail specific technical concepts. To make 
these concepts easier to understand examples, based on the ArcMap (version 9.2) user interface 
have been provided. While these examples are based on ArcMap, conceptually they will be 
applicable to other GIS user interfaces. 
 

1.0.1 Course Overview 
 
GIS has been characterized as a set of tools for collecting, storing, analyzing and displaying 
geographic data.  Much of the effort in GIS focuses on tasks relating to the ability to represent and 
describe real world objects in a digital environment.  Topics in this field relate to the abstraction of 
features as points, lines and polygons in a GIS database, the understanding and use of coordinate 
systems and map projections for describing locations on the earth’s surface, and the physical file 
formats used to represent features in a spatial database.  Much of the capability of GIS software 
applications emphasizes these areas of interest.  Several courses in this training program focus on 
these topics, including: 

GII-01  Elements of GIS 
GII-05  Geographic DBMS 
GII-06  Geodesy and Cartography 

 
While these GIS functions relate primarily a spatial inventory of features, the analysis functions of a 
GIS seek to help in the understanding of the patterns and processes which lie beneath the features 
represented in a spatial database.  It is these analytical capabilities which separate GIS from 
related applications such as computer aided design (CAD) and automated cartography.  Spatial 
analysis might help researchers understand a process or distribution of features, or it might help an 
organization make better decisions based on a more thorough understanding of the data. 
 
Spatial analysis topics appear in several courses in this training program: 
GII-01  Elements of GIS 
GII-04  Applications of Geographic Information Infrastructure 
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GII-07  Spatial Analysis (this course) 
 
GII-01, being the introductory GIS course, covers most GIS areas including spatial analysis in a 
generalized manner.  As a result, some of its content will overlap with this course (GII-07) 
somewhat, particularly in Module 2 of this course.  The intention is to have this course cover such 
material in more detail than was presented in GII-01.  GII-04 will address highly specialized 
analysis techniques such as network analysis, terrain modeling and hydrological modeling as part 
of its discussion of specific application areas in the field of GIS.  This course will concentrate on the 
major generalized analysis techniques. As a result, GII-04 and GII-07, while perhaps sharing some 
basic concepts, should not have significant overlap. 
 
The goal of this course is to provide an introduction to the techniques used in the analysis of spatial 
data.  There is a broad range of analytical tools in a typical GIS application, ranging from simple 
actions such as a measurement of distance to sophisticated models which seek to predict spatial 
outcomes based on existing or predicted conditions.  Given this vast range of techniques for spatial 
analysis, most can only be covered to a limited depth. 
 
Module 1 looks at the most basic of analytical tools, those to simply visualize or examine existing 
spatial data.  We will discuss simple query and selection procedures, and look at elementary ways 
of summarizing existing data using basic statistics, summaries and thematic maps. 
 
Module 2 examines what many would consider the mainstream analysis tools.  These are the 
geoprocessing tools and techniques which are used constantly in any GIS workplace, such as 
overlay, buffer and clip operations.  Tools for both raster and vector analysis will be examined in 
this module. 
 
Module 3 will discuss the statistical methods applied to spatial data.  These have their basis in 
classical statistics, but which accommodate the limitations and characteristics of spatial data.  Such 
tools are very effective for describing and understanding large volumes of spatial data.  We will 
look at topics such as spatial autocorrelation, pattern analysis and density estimation methods. 
 
Module 4 addresses the process of understanding continuous geographic phenomena.  This 
geostatistics module will explore the processes of interpolation, smoothing and prediction of 
observations using several techniques, such as inverse distance weighting (IDW), polynomial and 
spline approximations, and Kriging. 
 
Module 5 examines the nature and use of models in spatial analysis.  This module will discuss the 
many different types of models and examine several example models in detail. 
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1.1  Data Attributes 

1.1.1 Location (e.g., X, Y and Z attributes) 
Fundamental to spatial analysis is the concept of place – where on the earth’s surface is a given 
feature or group of features located. The majority of spatial analysis is conducted on features that 
exist in two-dimensional space. More complex analyses can be conducted on three-dimensional 
data (e.g., features that exist above or below the earth’s surface). In some instances GIS-based 
datasets can also consider a fourth dimension: time. An example of a multi-temporal dataset would 
be a land use coverage that stores land use attributes for multiple years allowing the dynamic 
nature of land use changes to be analyzed over time. 
 
Data are stored in four basic formats - three of these involve the storage of spatial information: 
vector; raster; and triangular irregular network (TIN). In addition, you can utilise tabular data which 
can subsequently be related to spatial datasets. 
 
Vector 
Vector data is constructed using points. The location of these points is defined by up to three 
coordinates: x, y and z. At minimum, an x and y coordinate pair is required to specify a point’s 
location. The z coordinate can represent an additional value related to a point, for example, 
elevation. The values of the coordinates themselves are a function of the coordinate system the 
data is stored in (e.g., latitude and longitude coordinates, or Universal Transverse Mercator [UTM]). 
Elevation values (a common z coordinate) can also be stored in a variety of units (e.g., metres or 
feet). A vector data model uses points (with their associated x and y coordinates) to construct 
spatial features in the form of points, lines and polygons (areas) (Figure 1). Points have 0 
dimension, possessing only the property of location. Lines are one-dimensional, having a length 
property. The simplest line is defined by two points: a start and an end point. The shape of more 
complex lines is defined by an infinite number of points existing between the start and stop point – 
curved lines can be smoothed by increasing the number of points. Polygons (or area features) are 
closed lines and are two-dimensional. These features have the properties of area and perimeter. 
An area may exist alone or be connected to other features through shared boundaries. Topology 
defines the spatial relationships between connecting or adjacent vector features. For example, how 
polygons share common boundaries and how lines snap to one another (e.g., road intersections). 
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Figure 1. Vector Data: Points, Lines and Polygons 

Attributes for points, lines and polygons are associated with each feature and can be stored either 
within the spatial dataset (a flat data structure) or in independent attribute tables which are related 
to the spatial features through a unique identifier. 
 
Discrete features (individually discernable features), such as, sampling locations (usually stored as 
points), roads (usually stored as lines) and parcel boundaries (usually stored as polygons) are 
examples of data typically represented by a vector data model. 
 
Vector data and models have their own advantages1: 
 

�  Data can be stored efficiently with high precision 
�  They require about 10% of storage space required to store same data in raster format 
�  Certain types of topological analysis are more efficient, or only possible, with vector 
�  Greater precision and accuracy 
�  Greater flexibility in storing and manipulating attribute data 

 
Raster 
In a raster data model, data are represented by a surface divided into a grid of regularly sized cells. 
Typically, a raster is a grid that has an origin (usually upper left-hand corner) and the location of 
each pixel is defined by this origin and an offset. A data grid is usually a rectangular shape and its 
size is defined by a number of rows and columns; the grid extent is calculated by multiplying the 
size of the grid (number of columns by number of rows) by the size of a pixel (expressed in a metric 
system). Although a wide variety of raster shapes are possible (e.g., triangles, hexagons) generally 
a series of rectangles, or more often, squares, called grid cells, are used. Each cell stores an 
attribute or value related to a portion of the earth’s surface. A raster data model is ideally suited for 
storing information related to continuous features (features that are not spatially discrete) for 
example temperature data or elevation. Images such as, air photos and satellite images are also 

                                                 
1 Which are at the same time disadvantages of raster 
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stored in raster format (Figure 2). Data are stored in a simple data structure based on rows and 
columns linked to fixed cell locations. 
 

 

Figure 2. Example Raster Structure: Satellite Image 

Each cell in the grid has a specified width and height with cell sizes ranging from a few centimetres 
or metres to a square kilometre. The dimension of the cells is typically a function of the resolution 
of the data. The cell size determines how coarsely or finely the data are represented – typically the 
more complex the data the more cells required to accurately represent the features. One apparent 
method of increasing the accuracy would be to maintain a very small cell size for all data; however, 
an important consideration is: the smaller the cell size the bigger the file size required to store the 
data and the slower the drawing time and processing speed when using the data. Typically cell 
sizes represent a compromise between data availability, accuracy, storage capability and 
processing/drawing speed. Cell size is referred to as the resolution of the data: if the cell sizes are 
25 x 25 metres, the resolution of the dataset is 25 metres. The smaller the cell size, the higher the 
resolution and, therefore, the greater the detail of the data being displayed. 
 
Linked to each cell is a value corresponding to the attribute being displayed (e.g., a precipitation 
dataset would have a rainfall amount linked to each cell or a land use coverage would have 
attributes such as urban, agriculture and forest linked to the cell). The values associated with each 
cell can be positive or negative, integer or floating-point. In some cases values of NODATA can be 
used to represent the absence of data (Figure 3). 
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Figure 3. Raster Data Example 

There are a number of advantages of raster data and models. These include:  
 

�  Simple data model 
�  Multiple spatial analysis functions often simpler and faster 
�  Efficient for data with high spatial variability 
�  Efficient for low spatial variability when compressed 
�  Easy to integrate with satellite and remotely-sensed data 

 
 
Triangulated Irregular Network 
A Triangulated Irregular Network (TIN) data model is ideal for representing surfaces, for example, 
terrain. Data are represented in the form of a series of non-overlapping triangles drawn between 
irregularly spaced points (Figure 4). In the case of a terrain model, each triangle represents an area 
of constant slope or gradient. Due to their capability of mapping irregularly spaced data, TINs can 
model surfaces that vary sharply in some areas more accurately that a raster – where data is more 
variable, more points can be added to represent the increased variability and fewer points are 
required where the surface is less variable. 
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Figure 4. Example of a TIN Terrain Surface 

Tabular 
Tabular data are used to store attributes or descriptive information about spatial data.  Typically 
information is stored in rows and columns (fields) in a database. The attributes may be stored in a 
table together with the spatial information or they can exist in separate tables that can be linked, or 
related to the spatial dataset through a unique identifier. GIS software packages can utilize tabular 
data in a variety of formats including: delimited text files, dBASE files, Microsoft Excel files, 
Microsoft Access files. In addition, tables can be imported from a variety of other database 
management software packages (e.g., Oracle). 

1.1.2 Attribute types 
As discussed above, attribute data describe the properties of spatial features. However, attribute 
data can be classified by data type. Data types vary between different GIS software packages, 
however typical data types include character, integer, float, decimal, single, double and string.  
Typical data types support within a GIS are detailed in Table 1 below. 
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Table 1. Typical Data Types * 

Name Field 
Range/Length Application 

Text Up to 64,000 
characters 

Suitable for the storage of names, classes or other text-
based attributes 

Date mm/dd/yyy 
hh:mm:ss 
A/PM 

Dates and times 

Short integer -32,768 to 32,767 Numeric attributes without fractional values (i.e., whole 
numbers) within a specified range. This type of field 
would be useful for the storage of coded values. 

Long integer -2,147,483,648 to 
2,147,486,647 

Numeric attributes without fractional values with the 
allowed ranges (this type of field can storage a decimal 
value). 

Single 
precision 
floating point 
number 
(Float) 

Approximately -
3.4E38 to 1.2E38 

Numeric attributes with fractional values within the 
allowed ranges (this type of field can storage a decimal 
value). 

Double 
precision 
floating point 
number 

Approximately -
2.2E308 to 
1.8E3.8 

Numeric attributes with fractional values within the 
allowed ranges (this type of field can storage a decimal 
value). 

BLOB Varies Images or other multi-media files 
GUID 36 characters Customized applications requiring global identifiers 
 
* The field names and range used are derived from the ArcMap field types but the examples would be applicable to 
other GIS software packages. 
 
Numeric fields may be stored in a variety of numeric data types, for example: short integer; long 
integer; single precision floating point number, double precision floating point number. Each type 
varies in the size and method used to store numeric data values as indicated in Table 1. Text fields 
are used to store alphanumeric symbols (e.g., vegetation names). The date data type can store 
dates, times or dates and times. Images, programming code and assorted multi-media files are 
stored as binary large object (BLOB) data types. GlobalID and GUID data types store registry style 
strings that uniquely identify a feature or table row within a geodatabase and across geodatabases. 
 
Attribute data can also be defined by measurement scale. These attribute types include categorical 
data (e.g., nominal, ordinal data types) and numeric data (e.g., interval, ratio and cyclic data). Each 
of the different data types are defined below: 

�  Nominal data describes different categories of data (e.g., land use types or vegetation). 
Nominal data can be numerical (e.g., phone numbers or numerical values assigned to 
classes of land use) but there is no implied ranking between the classes.   

�  Ordinal data implies a ranking between classes, for example, traffic volumes may be 
assigned the classes High, Moderate or Low. However, while ranked, ordinal data are 
qualitative in nature (i.e., they do not have an associated numerical value). 
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�  Interval data are quantitative, having known measurements or intervals between the 
values. Examples of interval data include: elevation data, precipitation levels, or 
temperatures.   

�  Ratio data are also quantitative in nature. They are similar to interval data but they are 
based on a meaningful, or absolute, zero value. Density values would be an example of 
ratio data as densities can range from 0 to infinity. 

�  Cyclic data are measurements of attributes that represent directions or cyclic 
phenomena. In some cases two points on a scale can be equal. For example, in 
directional data 0° and 360° are equal. 

The data type used to store the information associated with a given attribute is a function of the 
measurement scale required to represent the data. For example, nominal or ordinal data would be 
stored in using a character data type, whereas interval, ratio or cyclic data would be stored as an 
integer or decimal (float). As mentioned above, nominal data can be represented by numerical 
values which would typically be assigned an integer data type. However, in this instance the 
numbers are being used as codes that would reference a look-up table for the full values.  

1.1.3 Attribute tables and data structures 
Attributes are stored within attribute tables. Typically a given table will store a set of attributes for a 
group of features that are similar in nature. The organization of an attribute table is referred to as 
its data structure. Attributes tables are structured into rows and columns. Columns represent a field 
or attribute value or a certain type. For example, a dataset of water sampling sites might have an 
attribute table detailing water temperatures, pH values or sediment levels.  Columns or fields within 
this table could include; an identifier field, minimum temperature, maximum temperature, winter pH, 
summer pH etc. The rows in the table represent the individual characteristics or attributes 
associated with each location (feature). These are also referred to as records in a database (e.g., 
the identifiers and the temperature and pH values associated with each location).  A table has a 
specified number of columns (e.g., fields) but can have any number of rows. Figure 5 provides an 
example of how an attribute table is displayed. The example provided in the figure is based on the 
ArcMap user interface, however, the concepts (e.g., rows, columns and records) apply to other GIS 
user interfaces. 



Spatial anglysis and modeling 

© National Land Service under the Ministry of Agriculture, 2007 
13 

 
 

Figure 5. Elements of an Attribute Table 

Attribute tables can be viewed, edited and queried within a GIS user interface through this kind or 
data browse function. In addition, tabular data related to a specific feature can also be accessed by 
selecting (usually by pointing at or clicking on a feature [e.g., a point, line or polygon]) in the map 
window. For example, ArcMap has an identify tool to perform this type of data query. To activate 
the Identify function left click on the identify button. In the map window, left click on the feature of 
interest and the tabular data for the map layers with data at that location will be displayed. You 
have the options of viewing data for the Top Layer, Visible Layers, Selectable Layers, All Layers, or 
you can pick a specific layer from a list. 

1.1.4 Field properties 
When you create a new table or feature class you can specify the number of fields to be included in 
an attribute table through a properties dialog box. Figure 6 provides an example based on the 
ArcMap user interface of what this type of dialog box looks like. You can also specify settings for 
fields, such as the field type and the maximum size of the data that can be stored in the field.  
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Figure 6. Shapefile Properties Dialog Box 

The viewing properties of the fields associated with an existing layer can be defined. Typically you 
can: specify the fields to be displayed (e.g., you can toggle the field display on or off); assign an 
alias to a field name to make it easier to understand the contents of the field; define the formatting 
for numeric data (e.g., define the number of decimals displayed); and determine the primary display 
field. 

1.1.5 Attribute joins and relates 
Attributes may be stored in flat files where all the data is contained in one large table (e.g., a 
feature attribute table) or as a relational database. Data in a relational database are stored in 
multiple tables. These tables may be related to one another through unique identifiers or keys. 
Relational data structures reduce the level of duplication within a database. In addition, because 
each table is stored separately, it can be prepared, maintained and edited independently. 
Relational databases are also advantageous because they increase the efficiency of both data 
management and data processing – tables only need to be linked together when a specific query 
or analysis is required. In addition to these benefits, relational data structures can make it easier to 
exchange data – if only the attributes are changing a new version of an attribute table can be 
distributed without having to redistribute the spatial dataset.  
 
There are four types of relationships possible between records within tables in a relational 
database:  
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�  one-to-one – One record in the first table is related to one (and only one) in the second 
table. For example, the attribute data for a series of water quality sampling stations could be 
stored in a related table. There would be the same number of stations as records in the 
attribute table with a relationship established through a station identifier attribute common to 
both tables. 

�  one-to-many – One record in a table is related to many records in another table. For 
example, several houses may be located on the same street. The spatial feature 
representing the street would have a unique identifier (e.g., STREET_ID) and the house 
records would be related to the street via this identifier. 

�  many-to-one – Many records in a table may be related to one record in another table. For 
example, a land use dataset might have hundreds of land use polygons with twenty possible 
land use classes stored in a separate look-up table. In this example the spatial data would 
store a numeric code ranging from one to twenty to represent the polygon’s land use. A 
relation between the two tables can be established based on this code. Using a one-to-
many relationship in this instance is beneficial because it reduces the time required to enter 
the land use attributes – rather than having to type out the full land use class name each 
time the operator only has to enter the numeric code value. This both speeds up data entry 
and reduces the potential for errors (e.g., spelling mistakes) in the data. 

�  many-to-many – Many records in a table may be related to many records in another table. 
For example, many vegetable types might be grown on a single farm and these types of 
vegetables may be grown on more than one farm. 

 
 
Attribute tables can be linked to the spatial layers through the join and relate functions. These are 
described below: 
 
Join 
A join involves appending the fields from one table to another through a relationship based on an 
attribute (e.g., an identifier) common to both tables. A join is usually used to attach additional 
attributes to a spatial data layer. Data can be joined in either a layer or a table view. While the 
names of the fields used to establish the join do not have to be identical, the data type does have 
to be the same. For example, strings are joined to strings and numeric fields to other numeric 
values. The join function is suitable when you are linking tables with one-to-one and many-to-one 
relationships. Joins are inappropriate with one-to-many relationships because only the first 
occurrence of a matching value is assigned to a record in the target table. 
 
If you are in an edit session, be aware that only the columns from the source table can be 
changed. The data in the appended columns can not be edited. If new fields are added they are 
added to the target table with no effect to the join tables. The appended columns can be 
referenced when calculating values in the columns of the target table. 
 
Relate 
As mentioned above, joins are used to establish one-to-one or many-to-one relationships between 
layers and tables. The relate function can be used to establish one-to-many or a many-to-many 
relationships because relates are bidirectional. Related tables are connected but the tables are 
physically separate – data is accessed when you work with the layer’s attributes. The properties of 
a relate (e.g., the fields and tables involved) are stored separately and when creating a relate you 
will be prompted to enter a relate name. The advantage of relates is that multiple files can be 
related, however, they can increase the time required to access and process the data. 
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1.2  Querying and Selecting Vector Data 
Querying GIS data is fundamental in retrieving pertinent data and discovering new spatial 
relationships.  Queries are also often useful in reducing intricate or cumbersome datasets to 
smaller or simpler forms.  They facilitate more complex interpretation or analysis.  There are two 
methods of querying, or selecting data, that are typically available to create subset(s) of data: 
attribute (non-spatial); and spatial queries. 

1.2.1 Select by attribute 
Attribute queries are questions about the attributes (or non-spatial characteristics) of the data, for 
example, how many roads in a transportation layer are 2 lane gravel?  Because attributes are 
actual information associated with features, the values stored in attribute tables often hold the most 
relevant answers to the questions raised in GIS analysis.  Structured Query Language (SQL) is a 
standard interface that uses logical expressions to extract matching records (i.e. develop selection 
sets). The syntax for SQL queries varies between software packages, however, the following 
example illustrates a typical query as it would be performed in ArcMap. The example illustrates 
how to select a specific road type from a roads dataset. 
 
�          Steps for selecting by attributes: 

�  From the Menu Bar in ArcMap, click Selection and choose Select By Attributes, or 
from an opened attribute table, click Options and choose Select By Attributes 

�  In the Select By Attributes dialog box, click the Layer drop-down menu and choose 
the layer containing the features you want to select (Figure 7) 

�  Click the Method drop-down menu and choose the selection method (see Section 
5.2.3 for more information on selection methods) 

�  Double-click (or type in the dialog box) the desired attribute field name 
�  Click an operator button to add it to the SQL expression (e.g. = or >) 
�  Click the Get Unique Values button to view the values for the selected field 
�  Double-click on a value to add it to the SQL expression (or manually type the specific 

value you are looking for) 
o Note that depending upon the data type of the field you are querying, the 

syntax is slightly different. 
o When querying a text field, values to find are enclosed in single quotes (e.g., 

[FEATURE] = ‘Bridge’) 
o When querying a numeric field, values are not enclosed in any characters 

(e.g., [AREA] > 12.0) 
�  Click Apply to run the query 
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Figure 7. Select by Attribute Dialog Box 

�  The number of features selected will be displayed in the lower left-hand corner of 
ArcMap.  The features associated with the selected attributes will also be 
simultaneously highlighted in the map window.  

 
Boolean Operators 
Boolean (or logical) operators are used to set the conditions of the criteria, from which an 
evaluation of True or False is derived.  Boolean operators include: 
 

o (=) equal to 
o (>) greater than 
o (<) less than 
o (>=) greater than or equal to 
o (<=) less than or equal to 
o (<>) not equal to 

 
 
Boolean Connectors 
Suppose you wanted to select features that satisfy two or more criteria, for example, how many 2 
lane gravel roads were built in the year 2002?  In this case, individual queries can be combined to 
answer a more complex questions. Boolean connectors (AND, OR, NOT, XOR) are used to 
combine these multi-part questions (Figure 8): 
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o AND – joins queries in order to satisfy two or more criteria 
o OR – joins queries in order to satisfy either one criterion or the other (can be 

both) 
o NOT – joins queries in order to satisfy one criterion, but not another 
o XOR - joins queries in order to satisfy one criterion or the other, but not both 

(i.e. mutually exclusive) 
 
 

 

Figure 8. Boolean Connectors (Venn Diagrams) 

Choosing the correct Boolean connector is important in order to correctly answer the question.  
Posing the question, “How many roads are 2 lane gravel AND were built in the year 2002?“ will 
yield a different answer from the question “How many roads are 2 lane gravel OR were built in the 
year 2002?“.  The latter query will most likely identify more records because the answer only needs 
to satisfy one criterion, not both. 
 
�          Steps for selecting by attributes (two or more criteria): 

�  In the Select By Attributes dialog box, double-click (or type in the dialog box) the 
desired attribute field name, operator, and the specific value you are looking for 

�  Repeat the above step for the second criterion.  Notice the two queries are combined 
with an AND Boolean connector (Figure 9). 

�  Click Apply to run the query 
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Figure 9. Select by Attribute using a Boolean Connector 

1.2.2 Spatial queries and relationships (select by location) 
Spatial queries are questions about ‘where’ certain features exist in space and how they relate to 
other features.  They allow you to select features based on their absolute position and/or location 
relative to other features in other layers.  For example, a spatial query will allow you to select all the 
sampling sites falling inside a watershed.  The simplest form of spatial query is to simply click on a 
position in the map view to select and/or inspect a feature. 
 
�          Steps for selecting features by cursor: The simplest way to query features is to click on one 
or, in order to capture several at a time, drag a box around an area of interest using a ‘select 
features’ pointer tool in ArcMap.  To do this: 

�  Ensure the target layer is checked in the Selection Tab at the bottom of the table of 
contents in ArcMap 

�  From the Tools toolbar, click on the Select Features button  
�  In the map window, click on an individual feature or drag a box around a group of 

features you wish to select 
�  The features will simultaneously be selected and highlighted in the map window and 

attribute table 
 
�          Steps for selecting by location: More powerful than simply selecting features is a query that 
examines the spatial relationships between features in different layers (e.g., where are the roads 
that are crossed by streams?)   
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�  From the Menu Bar in ArcMap, click Selection and choose Select By Location 
�  In the Select By Location window, click the drop-down arrow and choose a selection 

method (see Section 5.2.3 for more information on selection methods) (Figure 10). 
�  Check on the layer(s) you wish to select features from (the target layer). 
�  Choose from the drop-down menu, the type of spatial relationship you are looking for: 

o Intersect – returns any feature that geometrically shares a common part with 
the source feature 

o Are within a distance of – returns any feature within a specified buffer distance 
of the source feature 

o Completely contain – returns any feature that wholly contains a feature in the 
source layer 

o Are completely within – returns any feature wholly contained by the feature(s) 
in the source layer 

o Have their centre in – returns any feature with its centroid falling within the 
geometry of the source feature 

o Share a line segment with – returns any feature that has at least two adjacent 
vertices in common with the source feature 

o Touch the boundary of – returns any feature that touches the boundary of 
features in the source layer 

o Are identical to – returns any feature that is exactly equal (has identical 
vertices) to a feature in the source layer 

o Are crossed by the outline of – returns any feature that has at least one edge, 
vertex, or endpoint in common with a feature in the source layer 

o Contain - returns any feature that contains a feature in the source layer 
o Are contained by - returns any feature contained by the feature(s) in the 

source layer 
�  Choose from the bottom drop-down menu, the layer you want to relate to (the source 

layer) 
�  Click Apply to run the query 
�  As with the Select by Attributes, the selected features will be highlighted in the map 

window.  Additionally, attributes associated with the selected features will be 
simultaneously selected and highlighted in the attribute table. 
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Figure 10. Select by Location Dialog Box 

1.2.3 Selection methods 
A few options exist to create and modify attribute and spatial selection sets (Table 2). Though the 
method name differs between select by attribute and select by location, the output selection type is 
essentially the same: 
 

Table 2. Selection Methods with Select by Attribute or Location 

Select by attribute Select by location Output 
create a new selection select features from creates a new selection set  
add to current selection add to the currently 

selected features in 
adds records to a selection set 
generated from a previously 
executed query 

remove from current 
selection 

remove from the 
currently selected 
features in 

removes records from a selection 
set generated from a previously 
executed query 

select from current 
selection 

select from the currently 
selected features in 

selects a smaller subset of records 
from a selection set generated from 
a previously executed query 
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Figure 11. Selection Methods 

After a selection set has been established, an operation can be performed to switch between the 
selected and unselected subsets.  Note that it is important to keep track of the type of selection you 
are making to ensure your query generates the correct results. 
 
�          Steps for switching between selected and unselected subsets: 

�  From an open attribute table, click Options and choose Switch Selection.  All 
previously selected records are now unselected, while the previously unselected 
records become selected. 

�  To clear the selection and restore all records to unselected, click Options and choose 
Clear Selection 

1.2.4 Definition queries 
Definition queries allow you to display features in the map window (and associated attribute tables) 
having specific attributes.  For example, as part of an inspection schedule, an engineer may wish 
to display and examine only bridges within a transportation layer, rather than having to view all 
transportation features. 
 
�          Steps for adding a definition query: 

�  Right-click the desired layer in the table of contents and choose Properties. 
�  Click the Definition Query tab. 
�  Type an SQL expression or click Query Builder (Figure 12). 

o Double-click (or type in the dialog box) the desired attribute field name 

20 
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�  Note that field names are delimited differently depending upon the 
source format of the feature class. 

�  When querying a feature class from a file geodatabase, shapefile or 
coverage, enclose field names in double quotes (e.g., “AREA”) 

�  When querying a personal geodatabase feature class, enclose field 
names in square brackets (e.g., [AREA]) 

�  When querying an SDE feature class, fields are not enclosed at all (e.g., 
AREA) 

o Click an operator button to add it to the SQL expression (e.g. =) 
o Click Get Unique Values to view the values for the selected field 
o Double-click on a value to add it to the SQL expression (or manually type the 

specific value you are looking for) 
�  Note that depending upon the data type of the field you are querying, 

the syntax is slightly different. 
�  When querying a text field, values to find are enclosed in single quotes 

(e.g., [FEATURE] = ‘Bridge’) 
�  When querying a numeric field, values are not enclosed in any 

characters (e.g., [AREA] > 12.0) 
o Click OK 

 
 

 

Figure 12. Definition Query Dialog Box 

�  Click Apply to activate the query. 
�  To display all the features again, delete the query 
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1.2.5 Viewing selection sets 
Once a query has been used to create a selection set, it is then valuable to view the newly created 
subset of data.  Features selected by attribute or location appear highlighted (in cyan) in the map 
window (Figure 13). 
 

 

 
 

Figure 13. Viewing a Selection Set in a Map Window 

It is also possible to view and subsequently analyse selected non-spatial data in an associated 
attribute table.  These records will be highlighted in the attribute table but you can also view just the 
selected records. 
 
�          Steps for viewing a selection set in an attribute table: 

�  Right-click a layer in the table of contents and choose Open Attribute Table 
�  Click on the Selected button at the bottom of the attribute table to display only the 

selected features (records) (Figure 14). 
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Figure 14. Viewing a Selection Set in an Attribute Table 

1.2.6 Copying (extracting) selected data 
To perform more detailed analyses on a portion of a dataset it may be beneficial to permanently 
isolate a subset of data from the original dataset.  This is achieved by extracting (or exporting) the 
selected features to a new layer or attributes to a new table.  It is also often useful to copy selected 
data to another existing layer or table in order to merge a subset of the original file with another 
dataset. 
 
�          Steps for exporting selected attributes to a new table: 

�  Open the attribute table for the feature class you will query  
�  Create a selection of records in a table, either by selecting features manually or by 

using the Select by Attributes function 
�  Click Options and choose Export 
�  Click the Export drop-down menu and choose Selected Records 
�  Click the Browse button and navigate to the existing folder or geodatabase you wish 

to export to 
�  Choose the type of table you wish to export to from the Save as type drop-down 

menu (e.g. geodatabase table, dbase, text file) 
�  Type a name for the new table to be created and click Save and then OK 
�  The newly created table can then be viewed and the data analysed in other programs 

such as MS Excel or Access.  This is useful for summarizing and interpreting tabular 
data. 

 
�          Steps for exporting selected features to a new layer: 

�  Create a selection of features 
�  In the table of contents, right-click the layer with the selected features and choose 

Data�  Export Data  
�  Specify the desired coordinate system using the radio buttons 
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�  Click the Browse button and navigate to the desired geodatabase or folder 
�  Choose the type of featureclass you wish to export to from the Save as type drop-

down menu (e.g. geodatabase featureclass or shapefile) 
�  Type a name for the new layer to be created and click Save and then OK 
�  The newly created featureclass can then be added to ArcMap for further analysis 

 
�          Steps for copying features from one layer to another existing layer: 

�  Start Editing in ArcMap by clicking Editor and choosing Start Editing – ensure the 
correct layer is set as the target layer 

�  Create a selection of features from the source layer 
�  Click the Copy button on the toolbar 
�  Click the Paste button on the toolbar 
�  The selected feature from the source layer will be copied to the target layer 
�  Click Editor and choose Save Edits and then Stop Editing 
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1.3  Querying and Selecting Raster Data 
As with vector layers, raster data can be queried by attribute or spatial location in order to extract 
subsets of information for more focused analysis.  

1.3.1 Extracting raster data 
Select by Attribute 
Some raster datasets contain attribute tables.  This might be the case where a satellite image has 
been classified to create a raster definition of land use, for example.  Where a raster attribute table 
exists, users may select cells of the raster using the Select by Attribute dialog, using a similar 
method as that used for vector data.  In the raster world, this function might be useful in identifying 
and summarizing the area covered by lakes in a land cover dataset (Figure 15). 
 
 

 

Figure 15. Select by Raster Attribute 

  Area = # of cells with Land Cover = ‘Lake’ x cell area 
       = 53,619 x 225m2 = 12,064,275 m2 (1,206 ha) 

 
�  Steps for selecting by attributes: 

�  From an open raster attribute table, click Options and choose Select By Attributes 
�  In the Select By Attributes window, click the Method drop-down menu and choose the 

selection method (see Section 5.2.3 for more information on selection methods) 
�  Double-click (or type in the dialog box) the desired attribute field name (with rasters, 

this will normally be the coded ‘value’ field which represents a real world property 
such as elevation or land-use) 

�  Click an operator button to add it to the SQL expression (e.g., = or >) 
�  Click Get Unique Values to view the values for the selected field 
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�  Double-click on a value to add it to the SQL expression (or manually type the specific 
value you are looking for - in single quotations) 

�  Click Apply to run the query 
 
Extract by Attribute 
Extracting raster cells by an attribute is accomplished by executing a ‘where’ clause query which 
results in a new raster.  A ‘where’ clause is a conditional statement that establishes the desired 
criteria of the query.  Consider a wildlife biologist modelling goat habitat, where the animals are 
only found on steep slopes.  We can extract all cells from a slope raster with a value greater than 
or equal to 20% to easily identify potential goat habitat.  In this case the where clause would be 
‘[SLOPE] >= 20’ (the square brackets [ ] surrounding the slope raster is normal syntax for rasters in 
ArcMap).  
 
�          Steps for extracting by attributes (Extract by Attributes Tool): 

�  Open ArcToolbox by clicking on the red toolbox button in the toolbar 
�  Choose Spatial Analyst Tools �  Extraction �  Extract by Attributes 
�  Create a ‘where’ clause statement to extract the cell values you wish to isolate 
�  Cells in the output raster that satisfy the criteria retain their cell value from the original 

dataset, while cells not meeting the specified query are assigned NoData (Figure 16). 
 

 
Select(SlopeGrid, ‘SLOPE >= 2’)*     

 

 
 

*Slope class 2 = 20% and 4 = 40%. 

Figure 16. Extract by Raster Attribute 

Like vector queries, raster queries can use Boolean connectors (AND, OR, NOT) to combine two or 
more criteria (or rasters) into one logical expression.  Typically these compound expressions work 
to combine multiple raster datasets and create an output raster.  For example, the goat habitat 
model from above might be modified to include an elevation raster, where only areas with slopes 
greater than or equal to 20% AND elevations higher than 1000 metres constitute suitable goat 
habitat.  In this case the statement would be ‘([SLOPE] >= 20) AND ([ELEV] > 1000). 
 
 
Select by Location 
Selecting by location in the raster world allows the user to extract cells based on location and 
investigate spatial relationships between disparate layers.  Suppose a city planner wanted to 
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summarise the area of forested land cover in an urban area, but only within certain municipal 
parks.  GIS can aid in this investigation by using a park polygon layer to extract forested areas from 
a city-wide land use raster.  Restricting the data to the parkland would facilitate summarising the 
data according to the requirements of the city planner. 
 
There are a number of ways to extract raster cells by their location, the majority of which use a 
specified geometric shape to exclude or include individual or groups of cells in a raster dataset.  
 
Extract by Mask – allows the user to extract raster data with a polygon feature class.  The polygon 
is applied as a mask and only the raster cells falling inside the mask are processed. 
 
Extract by Shapes 

Extract by Points – uses a list of coordinate values (x, y values representing points) to output 
only the cells of a raster situated at these point locations. 
Extract by Circle – uses the centre coordinate and radius of a circle to output the cells of a 
raster situated inside (or outside) of the circle. 
Extract by Polygon/Rectangle – uses a list of coordinate values defining an area to output 
the cells of a raster situated either inside or outside of the area. 

1.3.2 Reclassification 
Raster reclassification (also known as recoding or transforming) allows you to simplify or aggregate 
data within a raster dataset.  For example, if you have a dataset with 10 tree species values and 
you want to group all tree species into a single class, the reclassification function will allow you to 
do this. 
 
�  Steps for reclassifying a raster dataset: 

�  Activate the Spatial Analyst extension by clicking on Tools and choosing Extensions.  
Place a check next to Spatial Analyst and click Close. 

�  Add the Spatial Analyst toolbar by right clicking anywhere in the toolbar area and 
choosing Spatial Analyst from the list 

�  Choose the target raster from the Layer drop-down menu (e.g., LandUse) 
�  Click on Spatial Analyst and choose Reclassify… 
�  In the Reclassification dialogue box, enter new values for output raster in the right-

hand column 
�  Click OK to execute the reclassification 

 
An example of grouping cells with common characteristics to create a simplified raster (e.g., 
combining continuous slope values into fewer slope classes [0-10% = 1, 11-20% = 2, etc.]) is 
provided in Figure 17. 
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Figure 17. Reclassification by Grouping Values 
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1.4  Summarizing and Interpreting Data 

1.4.1 Summarizing data 
The summarize function allows you to classify data based on an attribute. In other words, you can 
organize data in different ways based on specific requirements. Summarize allows you to generate 
summary statistics (e.g., counts, average, minimum and maximum values) for your data. For 
example, a land use dataset consisting of hundreds of polygons with ten potential land use classes 
can be summarized to tell you the total area of each class. In this example, a new table would be 
created containing a column with each of the land uses listed and an area column containing the 
sum of the area of all the polygons falling within that class.  
 
To summarize data in ArcMap open an attribute table view and then right-click on the name of the 
field you want to summarize. Select (by left-clicking) on the summarize function. This will present 
the summarize dialog box (Figure 18). The name of the field you selected to summarize will appear 
in the Select field to summarize step. If you want to select a different field just pull down the list and 
select one of the field names. The second step in the dialog box prompts you to select the 
summary statistics to be included in the output table. In the land use example we want to sum the 
total area of each land use class so you would tick (by left-clicking) on the Sum check box. The 
final step is to specify the name of the output table. If you have any records selected (e.g., the 
results of a query) the summarize function gives you the option of summarizing all the records or 
only the selected records. When you have finished making the selection, click on the OK button 
and then click Yes when prompted to add the new table. 
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Figure 18. Summarize Dialog Box 

1.4.2 Statistics 
A GIS will allow you to calculate statistics describing the contents of numeric fields. You can view a 
count of the number of records, the minimum and maximum values for the field, the sum of the 
values, a mean and the standard deviation. In addition, many interfaces will display a histogram 
providing a frequency distribution for the values in the field. The dialog box will allow you to 
generate statistics for other field in the table by pulling down the field dropdown list and selecting 
another field name. 
 
To calculate statistics for a field in ArcMap open an attribute table view and then right-click on the 
name of the field you want to describe. Selecting Statistics from the list will display a dialog box 
(Figure 19). Note that statistics can only be generated for numeric type fields. 
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Figure 

19. Statistics 
Results 
Example 

1.4.3 Graphs 
Graphs allow you to examine and summarize the data in a format that is often easier to understand 
than tabular data because they allow you to visualize the data in different ways. In map layouts 
they can be used to show additional information related to information on the map or present the 
same information in a different way. Using our land use example, we could generate a map where 
each land use class is displayed in a unique colour and then include a graph that provides a 
summary of the total area of each land use class. The map window and the graph would 
compliment one another, giving the reader more details concerning the information being 
displayed. There are a number of different types of graphs (both two- and three-dimensional) to 
choose from. Each graph type has display properties that can be adjusted based on the type of 
data you are displaying and the way you want to present the data. Various types of graphs 
available are described below, with some simple examples of common graph types: 
 

�  Line – Line graphs display data in lines on an x, y grid. One or 
more lines may be in the graph. Line graphs are useful for 
displaying trends in data along a continuous scale. Changes in 
population rates or gross domestic product (GDP) over a series of 
years would be displayed effectively using this type of graph.  

 
 
 
 
�  Polar – A polar graph is similar to a line graph but it displays angular data (in degrees or 

radians) on a circular grid. They are useful for displaying the 
results of mathematical formulas. 
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�  Area – An area graph is similar to a line graph in that one or more lines are displayed on 
and x, y grid and are also useful for showing trends in values. The shading in area graphs 
can more effectively emphasize differences in quantities 

 
 
 
�  Scatter – A scatter plot uses symbols (e.g., crosses) to plot x, y (and potentially z) values 

based on the attributes in the dataset. Scatter plots allow multiple variables to be displayed 
effectively and may allow associations between variables to be examined more effectively. 
For example, if we wanted to examine the potential association between annual income 
rates and life expectancy these two variables could be represented using a scatter plot. 

�  Bubble – Bubble graphs are similar to scatter plots but they allow you to plot three variables 
in two dimensions. Rather than using uniformly sized symbols a bubble plot uses symbols 
(or bubbles) that are proportionally sized to portray the values associated with the third 
variable. Using the scatter graph example of comparing income to life expectancy we could 
compare the third value of weight to examine potential correlations between the variables. 

�  Bar and Column – Bar or column charts are also referred to as 
histograms. They group data into equal intervals (represented 
as classes) and use either bars or columns to depict the number 
or frequency of values in each class. These types of graphs are 
useful for showing trends in values (e.g., monthly temperature 
or precipitation values).   

 
 
 
�  High-Low-Close – A high-low-close graph displays a range of y 

values (as a vertical bar) at each x value. Horizontal crossbars are placed on the vertical bar 
to represent highs and lows in the data. This type of graph can be used to depict fluctuations 
in the values of stocks over the course of the day – plotting the opening, high, low and 
closing prices. 

�  Pie Chart – Pie charts can be two- or three-dimensional. They  
display data in a circle, or pie, where wedges represent different 
proportions or ratios in the data. The proportion of different land 
use classes could be effectively displayed using a pie chart. 

 
 
 
 
When creating a graph you should determine the variable(s) you want to graph and then select a 
graph type that will effectively display the data. To create a graph in ArcMap and add it to a layout 
select the Graph option from the Tools menu and click on Create. This will display the first page of 
the Graph Wizard where you will be prompted to select a graph type (Figure 20). The example that 
follows shows how to generate a column graph depicting land cover classes 
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Figure 20. Graph Wizard Step 1 of 2 

Use the graph wizard to select the appropriate layer (or table) and one of the styles of column 
graphs. Once you have decided upon the graph type/style and the data fields, click on the Next 
button to progress to the second screen in the wizard (Figure 21). You can specify the general 
graph properties such as title names and x and y axis labels.  By clicking the check boxes, you can 
instruct the software to use either the all records in the file or only the selected records. 
 
�  Steps for creating a graph: 

1. Under the Graph type drop-down menu, choose the type of graph you want to create 
2. Under the Layer/Table drop-down menu, choose the layer or table you want to graph 
3. Choose the data field you wish to graph from the Value field drop-down menu and specify 

an x field if desired 
4. Click the check box if you wish to create a legend to accompany the graph 
5. Change the bar style and colour if desired 
6. Click Next 
7. Select the radio button next to all features or selected features 
8. Enter a title for the graph 
9. Click the Tabs under Axis properties to adjust the visibility and title names for each axis 
10. Click Finish 
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Figure 21. Graph Wizard Step 2 of 2 
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Self-Study Questions 
 

1. What are the advantages of the raster data model over the vector data model? 
 
2. What data type (e.g., text, long integer, etc.) would be most appropriate to store each of the 

following attributes of a land parcel feature class? 
 

ParcelOwner  (name of the person owning the land) 
ParcelArea  (area, in square metres, of the parcel) 
PurchaseDate  (self-explanitory) 
NumStructures  (the number of buildings on the parcel) 

 
3. A land use attribute (e.g., agriculture, forest, urban, etc.) is an example of which level of 

measurement (nominal, ordinal, interval, ratio or cyclic)? 
 
4. Describe the difference between a Join and a Relate operation in ArcMap. 

 
5. Describe a query which would select all LandParcels with a LandUse classification of 

Agricultural and an AreaHa (area measured in hectares) larger than 10 hectares. 
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2  Basic Spatial Analysis 
 

Spatial analysis in GIS allows us to turn data into information and create new data (derivative 
datasets) by manipulating existing spatial features and their related attributes. GIS packages are 
equipped with a variety of analysis functions that allow us to manipulate both vector and raster data 
formats.  These functions can be thought of as a set of tools for spatial analysis, and in fact several 
GIS applications use this “toolbox” analogy in describing the geoprocessing functions available.   
 
Tasks performed by a GIS analyst will typically involve making use of several of these analytical 
tools.  For example, a simple analytical problem might be to determine the amount of agricultural 
activity within 500m of streams, perhaps as a means of quantifying riparian disturbance, or water 
quality degradation.  To answer such a question, an analyst must buffer the streams by 500m, 
overlay the buffers with agriculture land use polygons, and then quantify the resulting intersection.  
This module seeks to enumerate and define many of the common analysis tools which are 
available in most commercial GIS applications, which can then be combined to resolve specific 
analytical problems. 
 
For organisational reasons, these functions are divided into the following topics: 
 

Topic 1:  Vector analysis methods 
Topic 2:  Raster analysis methods  
Topic 3:  Generalizing data 
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2.1 Topic 1: Vector Analysis Methods 

2.1.1 Extraction 
Extracting portions of data is an effective means of isolating specific areas for further processing or 
data analysis.  Similar to queries and selection sets, extraction functions can be used to reduce the 
size of datasets and/or facilitate more complex interpretation. While the development of queries 
and selection sets also will allow you to isolate portions of a dataset, extraction techniques differ in 
that these portions of data are isolated in a permanent way - through the creation of new data 
layers. GIS software packages provide a suite of tools to extract data, the most useful being, clip, 
select, split and erase. 
 
Clip 
Working much like a cookie-cutter, clip allows you to intersect two feature layers to extract a portion 
of a dataset (the input layer) based on the spatial extent of another dataset (the clip layer). The clip 
function creates a new data layer (output) consisting of the features of the input layer that fall within 
the extent of the clip layer (Figure 1). 
 
 

 

Figure 1. Clip Example 

Clip is useful for developing a subset of features from a series of existing data layers to match a 
common boundary, for example the boundary of a study area or a jurisdictional boundary (e.g., a 
province, county, state, or municipal boundary). For example, an urban planner might wish to look 
at a street network layer, but only those streets falling within a certain municipal boundary. Clipping 
would be useful in order to permanently extract the street features matching the extent of the 
municipal boundary. 
 
The input layer to be clipped may contain points, lines or polygons; however, because the element 
of area is required, the clip layer must be a polygon. The field names and attributes of the features 
in the output layer’s table are maintained (i.e., they are identical to those of the input table). One 
potential exception to this rule are area, length and perimeter fields, which, depending on the 
software and/or data format being used, may or may not automatically recalculate. The values of 
any features intersected by the clip boundary may require updating to reflect the change in area. 
 
Split 

Input Clip Layer 
eature 

Output 
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Split is used to divide an input layer into two or more independent layers, based on geographically 
corresponding features in a split layer. Similar to the clip function, the input layer may consist of 
point, line or polygon features, however, the split layer must be a polygon to define the areal extent 
of the analysis. The features in the input layer are broken up along the boundaries of the split layer 
features as illustrated in Figure 2. 
 

 

Figure 2. Spilt Example 

Splitting is essentially a means of simultaneously executing a series of clips along boundaries 
defined by the split layer. The number of output layers is dictated by the number of split features 
(i.e., if the split file contains four polygons, the input file will be split into four separate files). Each 
resulting output layer will be named with the unique attribute value present within the selected field 
from the split layer. As with clipping, the field names and attributes of the input table are maintained 
in the output layers.  The split function would be useful for dividing a large coverage into 
jurisdictional areas, for example, the zoning data associated with a city could be divided based on 
municipal boundaries or a national map series could be developed by dividing topographic data 
based on a defined grid. 
 
Select 
The Select tool may be used to create a new layer containing features extracted from an input 
layer. This is achieved through the execution of a user-defined query expression to select a subset 
of the data; these selected features are permanently extracted to a new output layer (Figure 3). 
 

Input Output Split Layer 
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Figure 3. Select Example 

To build on the example above, the urban planner might wish to look at only double-line streets in 
the particular municipality of interest. In this case, he or she would execute a selection query to 
extract only those desired features to a new layer.  
 
Erase 
Erase creates a new output layer by discarding features from the input layer that fall within the area 
extent of the erase (overlay) layer (Figure 4). The input layer can be points, lines, or polygons; 
however, because the element of area is required, the erase layer must be a polygon.  Features in 
the output layer will be of the same geometry type as the features in the input layer. Examples of 
how the erase function could be used include: 
 

�  In a map layout, erase can be used to develop a mask to allow only those features falling 
within a given area (e.g., a study area boundary) to be displayed. 

�  In a suitability analysis, erase could be used to apply suitability rules. For example, if 
potential sites have to have a 200 metre setback from wetlands then wetland features can 
be buffered by 200 metres and the buffer polygon used as the erase layer to remove 
potential sites falling within this zone from consideration. 

 
 

Selected features in the 
Input layer 

Output 
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Figure 4. Erase Example 

2.1.2 Overlay 
Central to GIS analysis is the integration of data to reveal the relationship(s) between two or more 
data sources. Overlay is one method of integrating information as it combines the spatial and 
attribute data from two or more input layers to create a new output layer. The spatial form of the 
new layer is shaped by the geometric intersection of the input and overlay features.  Generally, the 
overlay of two or more layers results in a more complex output layer, with more polygons, 
intersections and/or line segments than what is present in the input layers.  
 
Each feature in the newly created output layer contains a combination of attributes from the input 
layers. Overlay functions, when associated with geometrical (or ‘physical’) overlays of data layers, 
are implemented by certain mathematical operations – both arithmetic and logical. Arithmetical 
operations commonly used, but not limited to, include addition, subtraction, division and 
multiplication. Logical operations are aimed at finding where specified conditions occur and use 
logical operands such as: AND; OR; >; and <. 
 
As discussed later in this module, methods for overlaying vector data differ from those of raster 
data related methods.  However, basically vector-based methods do not generalize the data but, 
due to relatively more intensive processing requirements, may be more appropriate for smaller or 
sparser datasets. Raster analysis methods generalize the data based on the largest cell size found 
among the input layers. Raster-based grid calculations are, however, often faster and easier. 
 
Four basic rules for combining the attributes of several layers can be applied to overlay analyses, 
and these are presented in Figure 5Figure  below.  While these rules are presented here with the 
vector analysis methods, they are equally relevant to a discussion of raster overlay methods. 
 
 

1. Enumeration Rule: Each attribute is preserved in the output layer and all unique combinations are recognized. 
For example, a soils layer, vegetation layer and precipitation layer are overlaid yielding a derivative coverage 
with a unique polygon for each possible combination. 

 

Input Output Erase feature 
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2. Dominance Rule: One value wins – the dominant (e.g., highest) value is the only one value assigned. For 
example, an overlay based on a series of sensitivity layers would assign the highest sensitivity value to each 
derivative polygon. 

 

 
 

3. Contributory Rule: Each attribute value contributes to the result - each source layer contributes to the result. 
For example, environmental sensitivity could be calculated based on the sum of a set of input layers: wildlife 
habitat sensitivity; riparian sensitivity; slope; and proximity to human disturbance. 

 

 
 

4. Interaction Rule:  A pair of values contribute to the result (i.e., decisions in each step may differ) 
 

 
 

Figure 5. Overlay Rules 

Three main types of vector overlay exist:  
 

�  point-in-polygon – The point features, which maintain their spatial location and attribute 
integrity in the output layer, are also assigned the attributes of the polygon they fall within. 
This type of overlay might allow an association between meteorological stations (the met 
station point layer) and vegetation types (the forest polygon layer) to be identified (Figure 6). 
The output layer would be the meteorological station point file with the addition of a 
vegetation type attribute. 
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Figure 6. Point in Polygon Overlay Example 

�  line-in-polygon – The line features, which maintain their spatial location and attribute 
integrity in the resulting output layer, are assigned the attributes of the polygon they fall 
within. This type of overlay would allow you to determine the vegetation types (derived from 
the forest polygon layer) associated with each line of a road layer (the road line layer) 
(Figure 7). Because a line may overlap multiple polygon types, the output layer (the road line 
map) will generally contain more line segments than the input layer. 

 
 

 

Figure 7. Line in Polygon Overlay Example 

�  polygon-on-polygon – The polygon geometries from the input and overlay layers combine 
to create a new set of polygons where each new polygon maintains the attributes from both 
input layers (Figure 8). This type of overlay might be used to find the association between 
slope and avalanche chutes.  Polygon-on-polygon is the most common of the vector overlay 
methods. 

 
 

 

Figure 8. Polygon on Polygon Overlay Example 

When performing a polygon-on-polygon overlay, there are several ways of combining the two sets 
of polygons.  These are as follows, with detailed discussions following: 
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�  Identity 
�  Intersect 
�  Symmetrical Difference 
�  Union 
�  Update 

 
Identity 
Identity is an overlay function that produces an output layer with the same area extent as the input 
layer (Figure 9). All input features and attributes are maintained.  The operation also preserves the 
geometry and attributes of the overlay (or identity) layer that fall within the input layer’s extent.  The 
input layer may contain points, lines or polygons, but the identity features (overlay) must be 
polygons. An example of when the identity function could be used would be if you wanted to 
identify those roads located beneath 1,000 metres elevation. The input layer would be the roads 
layer, the identity layer a polygonal coverage representing all areas lower than 1,000 metres. The 
resulting output layer would be populated with an attribute identifying those roads below 1,000 
metres. We are then also able to conclude that the roads without an elevation attribute are above 
the 1,000 metre contour. 
 
 
 

 

Figure 9. Identity Example 

 
 

Identity layer 
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Intersect 
Intersect creates an output layer by preserving only those features (or portions of features) that are 
common to both inputs (Figure 10). All features in the output layer contain attribute data from both 
of the input layers.  The inputs may contain different geometry types (points, lines or polygons), but 
normally the overlay input is a polygon layer.  The output geometry can only be of the lowest 
common geometry of the input layers - a point input combined with a polygon overlay will produce 
a point output with the points containing attributes from the polygon they fall within. An example of 
when the intersect function could be used would be if you wanted to identify only those roads 
located beneath 1,000 metres elevation. The input layers would be the roads layer and a polygonal 
coverage representing all areas beneath 1,000 metres. The resulting output layer would be a 
subset of roads – only the features located below the 1,000 metre contour. 
 
 

 

Figure 10. Intersect Example 

Symmetrical Difference 
The symmetrical difference tool creates an output layer that preserves those features (or portions 
of features) that are not common to features in the other input layer - portions from the inputs that 
do not overlap (Figure 11). Both input layers must have polygon geometry in order to execute the 
operation. The symmetrical difference function would be used when you want to remove areas of 
overlap between layers, for example, if you had a zone of influence polygon around a chemical 
plant you could identify those residences potentially not impacted by potential chemical emissions.  
 
 

 

Figure 11. Symmetrical Difference Example 

Union 
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Union combines and maintains all features and attributes from both input and overlay layers 
(Figure 12). Both input layers must have polygon geometry in order to execute the operation. Using 
our chemical plant example, a union would allow you to identify those residences falling both inside 
and outside the zone of influence of the plant. 
 

 

Figure 12. Union Example 

Update 
The update tool is used to create an output layer by erasing and replacing the features and 
attributes of an input layer with those from an overlapping update layer.  Those portions of the input 
layer that are not overlapped by features in the update layer are not affected, and hence, are 
preserved in their original state in the output layer. This operation might be useful in updating a 
land use layer with a more current forest harvest layer.  The regions of outdated land use, for 
example, where new harvesting has occurred, would be erased and replaced by harvest polygons. 
Caution should be taken during this operation as differences between layers (arising from dissimilar 
data sources with differences in quality and scale) can result in mismatched boundaries and/or 
slivers (see below) in the output layer. 
 
 
One of the typical errors arising from overlaying polygon layers involves the generation of slivers 
in the output layers. Slivers are very small polygons created along shared boundaries during the 
overlay of inputs (Figure 13). In an overlay analysis, this problem can be the result of overlaying 
two files of different scales. Slivers can also be due to digitizing errors, non-precise geo-
referencing, or data export.  The Eliminate function may be used to help operators remove slivers 
resulting from polygon overlay operations. 
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Figure 13. Slivers Example 

Eliminate 
The eliminate command can be used to remove slivers from a layer resulting from an overlay 
analysis or buffering (see Section 1.1.3). The sliver polygons are merged with neighbouring 
polygons. The user can select whether the sliver polygons merge with the largest adjacent polygon 
or the polygon with the largest shared boundary. Typically, eliminate would be run subsequent to 
an overlay analysis - a query would be conducted to select those polygons in the layer beneath a 
specified area threshold (i.e., very small polygons that would be slivers), this selection set would 
then be used to identify the polygons to be eliminated. Care should be taken when using the 
eliminate function as it can result in substantial alterations to a data layer. For example, slivers can 
often develop along coastlines when multiple layers are overlaid. Running an eliminate command 
would therefore potentially alter the coastline in the resultant coverage. Care should also be taken 
when establishing the area threshold during the development of the selection set because as if you 
establish too large a threshold potentially smaller polygons that are ‘real’ data will be merged with 
their neighbouring polygons. 

2.1.3 Proximity 
Proximity is a spatial relationship concept which corresponds to the geographic “nearness” of 
features.  This allows us to select features located within a certain distance of other specified 
features, or to create new features by expanding a feature’s extent.  For example, we may wish to 
find all hotels within 10 kilometres of the Vilnius Cathedral located in the city centre. Buffers and 
other proximity-based analyses help us answers these types of questions. 
 
Buffer 
Building on the notion of proximity, buffering creates a zone of inclusion or exclusion by creating an 
area around existing point, line and polygon features based on a specified distance. The GIS 
software extends a line in all directions around the features until a solid polygon has been formed 
and, finally, a new layer containing the buffer results is created. Point buffers are circular in shape, 
while the form of line and polygon buffers is defined by the geometries of the input features (Figure 
14). 
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Figure 
14. 

Types of 
Buffers 

With 
line 

buffers, 
the 

buffer zone can be created on both sides of the line, or on either only the left or right side.  In the 
case of polygon buffers, users may choose how the buffer zone is created, depending on where 
the area of interest lies:  
 

�  only the area outside of the polygon is buffered; 
�  the buffer zone includes the area outside of the polygon plus the entire area of the original 

polygon; or 
�  the buffer area is created both inside and outside of the polygon boundary. 

 
A newly-created buffer feature may be used in several ways.  It may form a new feature, such as a 
riparian zone, or a road polygon based on the stream or road centreline.  It might also form the 
basis of a proximity analysis, by then overlaying the buffer with another input layer to find features 
which intersect the buffer. 
 
The size of buffers can be defined by a variable distance, thus allowing individual features to have 
different buffer widths; normally, each particular buffer width would be based on distance value in 
an associated attribute table.  For example, using a hydrology network to create varying riparian 
zones representing restricted logging areas, larger rivers might be buffered by a greater width than 
lower order streams and creeks. Related to varying buffer size, is the notion of creating multiple 
buffers for features.  It is possible to create multiple rings around features to delineate zones 
depicting some hierarchy or changing level of influence.  This might be useful in defining zones of 
varying noise level around machinery in a manufacturing plant.  When creating buffers, the option 
also exists to dissolve the resultant adjacent polygon buffers (i.e., merging overlapping areas) 
(Figure 15). We will discuss dissolving in more detail in section 5.3.1. 
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Multiple zones (or rings) Varying buffer size defined by 
distance 

Dissolved (top) and un- 
dissolved buffers (bottom) 

Figure 15. Buffer Variables 

To avoid potential errors, it is important to know the units of measurement for a particular dataset 
(e.g., metres versus kilometres).  Because buffering will operate on a selection set, ensuring the 
desired features are selected prior to initiating the buffer operation may also be of importance.   
 
Near 
Near calculates the distance between each point in an input layer and the nearest point or location 
along a line in another layer (also called the Near Feature layer).  The resultant distance values are 
recorded in the input layer’s attribute table.  A fire department might use this tool to determine the 
closest water hydrant (near feature layer) for each school (input layer) in a certain district. 
 
Point Distance 
Point distance determines the distances between each point feature in an input layer to all points in 
another layer, within a specified search radius.  The results are recorded in an output table, 
containing fields for the feature’s unique identifier and distance values. Using our hydrant example, 
the fire department might wish to expand their search to determine the distances separating each 
school from all water hydrants within a specified search radius. 

2.1.4 Statistics 

Frequency 
Frequency produces a table summarizing the unique codes (and their frequency) for a specified set 
of fields from an input feature layer or table.  This might be useful to a vegetation ecologist 
interested in determining the frequency of all the plant types within a particular study area. 
 
 
Summary Statistics 
The summary statistics tool calculates one or more of the following statistics on numeric fields in an 
attribute table: sum, mean, maximum, minimum, range, standard deviation, first and last.  The 
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resulting output table can be saved in a variety of formats, including; dbase, or as a personal 
geodatabase table. 
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2.2  Raster Analysis Methods 

2.2.1 Analysis Options 
Prior to running analyses on a raster dataset it is important to establish the parameters of the 
analysis environment, which include the spatial extent of the analysis and the output cell size. 
 
Analysis Extent 
It may be necessary to perform an analysis on only a portion of a larger raster dataset, the area of 
interest may be defined by specified minimum and maximum map coordinates (x, y) which define a 
rectangle.  Alternatively, some combination of input raster datasets may be used to define the 
analysis extent based on multiple inputs.  In this case, either the union or intersect of the rasters 
defines the area. With a union setting, the analysis extent encompasses the entire area of all input 
rasters.  Using the intersect option results in an analysis extent equal to only the area of overlap 
between all input raster datasets (i.e. the minimum of the inputs). 
 
Masks 
Setting a mask allows you to conduct analyses on a selected set of cells, and hence, is another 
method to define the extent of analysis.  Only those cells that are identified by the mask will be 
considered when running the analysis.  Two methods exist for setting analysis masks: 
 

1. By attribute: Selecting rows in the attribute table of a raster allows you to restrict analysis to 
particular raster values. For example, a wildlife ecologist may wish to examine only those 
areas above a certain elevation to assess bear denning habitat.  

2. By area: An existing feature layer (point, line or polygon) or raster dataset defines the spatial 
extent of analysis. Only those cells falling within the mask extent will be processed during 
analysis. For instance, the same ecologist might wish to limit the denning habitat analysis to 
areas within a park boundary and therefore a polygon, defining the extent of the park, would 
be used as a mask. 

 
Cell Size 
Establishing an output raster cell size is heavily influenced by the resolution or cell size of the input 
datasets.  As a guideline, the output cell size should be equal to, or larger than, the coarsest cell 
size of the input raster datasets (known as the maximum of inputs).  This ensures the resolution of 
the output raster is consistent with that of the least accurate (the coarsest) input dataset.  Using a 
cell size finer than that of the input rasters does not ‘improve’ the accuracy of data.  Other options 
available include: 
 

�  Minimum of inputs – The output cell size equals the input raster with the smallest cell size. 
Take caution with this option because, as mentioned above, refining cell sizes of coarser 
inputs does not result in accurate higher resolution output. 

�  As specified – Allows you to specify an output cell size. 
�  Same as Layer – Allows you to specify the output resolution equal to the cell size of an 

input raster. 
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2.2.2 Surface Analysis 
GIS allows us to accurately represent, model and analyze terrain with 3-Dimensional (3-D) and 
raster analysis tools.  The following surface analysis tools provide insight into the shape of 
landforms and reveal surface patterns that may not normally be apparent from a raster-based 
digital elevation model (DEM) (Figure 16) or vector-based triangulated irregular network (TIN) 
(Figure 17). 
 
Such terrain tools are discussed in detail in the course GII-04, but are presented here in summary 
form for completeness. 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. DEM for Vilnius 
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Figure 17. TIN Terrain Model of Vilnius 

Slope 
Slope is a measure of the maximum rate of change in elevation at a particular surface location. 
Although it can be expressed in either degrees or percent, both are simply variations on the 
evaluation of the rise in elevation over the run (distance on the ground).  An output raster is created 
by calculating the slope for each cell in a raster DEM or each facet in a TIN, depending on the 
format of the input dataset.  In Figure 18
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, we are able to view and identify the areas of gentle, moderate and steep slope by theming the 
raster on grouped slope values (e.g., 0-2°, 2-4°, etc.).  For instance, we can see the steeper 
areas (regions coloured yellow & red) occur along the banks of Vilnia and Neris rivers.  In 
order to mitigate the potential threat of landslides, a structural engineer might develop and 
examine this type of slope information.�
�



Spatial anglysis and modeling 

© National Land Service under the Ministry of Agriculture, 2007 
58 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18. Slope Map of Vilnius 

Aspect 
Aspect is defined as the directional measure of the maximum rate of change in elevation; 
essentially, it identifies the cardinal direction a certain slope is facing (e.g., north, south, east, 
west).  Aspect is measured clockwise from the north (0°) and is expressed in degrees, ranging 
from 0° to 359.9° (Figure 19). 
 

 

Figure 19. Aspect – Measured in Degrees - Clockwise from North 

As with a slope calculation, an output raster is created by determining the aspect for each cell in 
a raster DEM or each facet in a TIN, depending on the format of the input dataset.  Cells with a 
slope equal to zero are assigned an aspect of -1.  An aspect layer reveals patterns in terrain 
not visible in a simple DEM or even slope map, as evident in Figure 20. 
 



Spatial anglysis and modeling 

© National Land Service under the Ministry of Agriculture, 2007 
59 

 
 
 

 

Figure 20. Aspect Map of Vilnius 

A hydrologist looking to establish locations for snow pack sampling might wish to examine only 
north and northeast slopes in an aspect layer. 
 
As with any raster dataset, you must consider resolution when creating a slope or aspect raster. As 
a general rule, the output cell size should never be smaller than the cell size of the input raster.   
 
Contour 
The contour tool is used to create a layer showing contours, or lines of equal elevation (also called 
isolines) (Figure 21). Contour maps allow you to identify and view regions of equal elevation and, 
by examining the spacing and position of isolines, they enable you to infer where steep slopes, 
cliffs, river valleys and ridge lines occur. Contour lines are spaced closely together in areas of 
steep terrain and further apart in flatter areas.  In the areas surrounding water, the peaks of contour 
lines indicate the upstream direction of streams and rivers. Important in the creation of contours is 
the selection of a contour interval – the distance in elevation between adjacent contour lines. A 
higher resolution DEM or TIN will be able to produce a tighter contour interval than a surface with a 
coarse cell size. 
 
 
 



Spatial anglysis and modeling 

© National Land Service under the Ministry of Agriculture, 2007 
60 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21. Contour Map of Vilnius 

A contour layer could be used to limit the search for potential habitat for wolves above certain 
elevation. 
 
Hill Shade 
The hill shade tool creates a shaded relief raster from an elevation grid or TIN.  By employing an 
illumination and shadowing of a surface layer, a hill shade can be very effective in representing 
relief or terrain, as it gives the impression of a three-dimensional landscape (Figure 22). Four 
factors combine to create a hill shade: 
 

1. Azimuth of the Sun – the direction of incoming light measured clockwise in degrees from 
north (0° - 360°); 

2. Altitude of the Sun – the angle of the illuminating source measured in degrees above the 
horizon (0° - 90°); 

3. Slope of the Surface – the slope of the cell or facet from the input DEM or TIN respectively; 
4. Aspect of the Surface – the aspect of the cell or facet from the input DEM or TIN 

respectively. 
 
Each cell in the output hill shade is assigned an illumination value (ranging from 0 (black) to 255 
(white) that when viewed simultaneously, gives the appearance of 3-D terrain. 
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Figure 22. Hill Shade of Vilnius 

Often, a hill shade is used as a backdrop for thematic maps to convey a sense of terrain, without 
overwhelming the other, more pertinent map information. Polygon or raster layers can be displayed 
using a transparency setting, thereby allowing the hill shade to be displayed ‘underneath’ the data 
layers. 
 
Viewshed 
The viewshed tool answers the question, ‘what features or regions of a surface layer are visible 
from one or more vantage points?’  Two input datasets are required to run a viewshed analysis; the 
first being a point layer with one or more viewpoints and the second a DEM or TIN surface 
representing a terrain model.   
 
Viewshed analysis works on the notion of ‘line-of-sight’ - a line connecting a viewpoint to a target.  
A feature that separates a viewpoint from a target (e.g., a mountain) will render that target invisible.  
Conversely, if no feature on the surface is blocking the view from an observation point to a target, 
then that target is visible.  In the case of a viewshed, the target is, in fact, every cell or facet of the 
input surface layer.  The output raster summarizes all the possible line-of-sight permutations and 
classifies each cell as either ‘visible’ or ‘not visible’ (Figure 23). By creating a viewshed, a logging 
company could minimize the visual impact of their forest harvest operations by restricting harvest in 
areas that can be seen from a community or highway. 
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Figure 23. Example of a Viewshed Analysis 

Options are available control the execution of a viewshed analysis and restrict or modify the 
results. Some examples available in ArcGIS are detailed below. These variables can be 
established as numeric fields within the attribute table of the observation layer and contain values 
that serve as observation constraints: 
 

�  SPOT: A z-value (height) which overrides the value normally derived from the surfaces z-
value. 

�  OFFSETA: A value specifying a vertical distance to be added to the z-value of the 
observation point (e.g., 1.5 metres added to a point to represent the average height of a 
person standing in that location). 

�  OFFSETB: A value specifying a vertical distance to be added to the z-value of each target 
cell in the surface (e.g., this could be used to simulate average vegetation height). 

�  AZIMUTH1: The first of two values (in degrees) used to limit the scan of a viewshed to a 
certain direction. 

�  AZIMUTH2: The second of two values (in degrees) used to limit the scan of a viewshed to a 
certain direction. 

�  VERT1: A value used to establish the upper vertical angle limit of a viewshed analysis. 
�  VERT2: A value used to establish the lower vertical angle limit of a viewshed analysis. 
�  RADIUS1: a value used to establish the minimum distance in which to begin a viewshed 

analysis (i.e., raster cells closer than the value set in RADIUS1 will not be considered for 
analysis). 
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�  RADIUS2: a value used to establish the maximum distance in which to restrict a viewshed 
analysis (i.e., raster cells beyond the value set in RADIUS2 will not be excluded from 
analysis). 

 
Generalized Raster functions (i.e., those not for specific applications such as terrain) fall into three 
categories: 
 

�  Local functions examine a single raster cell in isolation 
�  Focal, or Neighbourhood functions examine the focal cell and also its adjacent cells, or 

those within a specified distance 
�  Zonal functions examine irregular shaped sets of raster cells which share a common cell 

value 
 
These functions will be described in detail in the sections which follow. 

2.2.3 Local Functions and Statistics 
Local functions are used to perform calculations on a single cell at a time, ignoring the value of 
neighbouring cells - surrounding cells have no influence on the cell in question. After performing 
the calculation on that cell, the function moves on to the next cell location until all cells in a raster 
(or within a mask) have been addressed (Figure 24). 
 
 
 

 
 

 

Figure 24. Local Function 

Local operations can make use of either single or multiple input datasets to create a new raster. 
 

Local Functions on a Single Raster 
Local functions are able to apply any arithmetic operation on each cell in a single input layer. For 
example, to convert rainfall values from inches to millimetres, we could multiply each cell by 25.4 
(Figure 25). 
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Figure 25. Local Function on a Single Layer 

Reclassification is a local function used to re-assign values in an input raster to create a new 
output raster.  This procedure allows you to simplify or aggregate (group data into classes) cell 
values within a raster dataset (Figure 26). 
 
 

 
 

Figure 26. Reclassification Example 

Reclassification is also widely used to replace values based on new information or change cells 
with No Data to actual values (this operation is useful for data sets that have gaps).  Section 5.3.2 
in Module 1 examines reclassification in further detail. 
 
Local Functions on Multiple Rasters 
Local functions can also be applied to multiple layers. This is functionally the raster overlap 
operation, and may combine the attributes from each layer in many ways as discussed in the 
previous discussion of vector overlay.   The attribute combination rules presented in Figure 5Figure  
may also be implemented with raster layers.  For example, the dominance rule might use a 
MAXIMUM function to take the largest value from the contributing layers, the contributory rule 
might use arithmetic operators to combine cell values, and the interaction rule might use a series of 
IF..ELSE structures to implement decisions based on cell values encountered.  Most commercial 
GIS applications incorporate a means of overlaying grid cell values in a variety of ways.  In ArcGIS 
the interface is called the Raster Calculator. Figure 27Figure  shows an example of two arithmetic 
operations used to combine raster cell values.  
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Figure 27. Local Function Applied to Multiple Layers 

Local Statistics 
Local (cell) statistics are another practical application of local function. This operation – often called 
compositing, overlaying or superimposing - involves calculating a particular summary statistic on a 
group of raster layers and creating an output raster containing the result.  Because it is a type of 
local function, local statistics compares and summarizes only corresponding cells from the input 
rasters (i.e., analysis is performed on a cell-by-cell basis).   
 
Below are some examples of the statistics that can be generated for a raster dataset: 
 

�  Maximum:  determines the highest value among input rasters on a cell-by-cell basis 
�  Minimum: determines the lowest value among input rasters on a cell-by-cell basis 
�  Majority: determines the value that occurs most often among input rasters on a cell-by-

cell basis 
�  Minority: determines the value that occurs least often among input rasters on a cell-by-

cell basis 
�  Sum:  calculates the sum of values from input rasters on a cell-by-cell basis 
�  Mean: calculates the mean (average) value from input rasters on a cell-by-cell basis 
�  Median: calculates the median (half of the values are above, half below) value from 

input rasters on a cell-by-cell basis  
�  Std. dev: calculates the standard deviation from input rasters on a cell-by-cell basis 
�  Range: determines the range in values (highest to lowest) from input rasters on a cell-

by-cell basis  
�  Variety: determines the number of unique values from input rasters on a cell-by-cell 

basis 
 
For example, you might wish to determine the maximum value between multiple input rasters; each 
cell in the output raster is derived from the values of the corresponding cell in each input raster.  
For instance, you could derive the highest rainfall for each cell location from a series of five input 
rasters representing five consecutive years of rainfall data. 
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In addition to arithmetical functions, Boolean (e.g., AND, OR, XOR, NOR) and logical operands 
(e.g., >, <, = etc) are often used in association with local functions. 

2.2.4 Neighbourhood Functions and Statistics 
Neighbourhood (or focal) functions expand on local functions in that the values of all pixels in a 
predetermined neighbourhood are considered when determining each output pixel’s value in a new 
raster.  Rectangles, annulus (doughnuts) and circles are the most frequently used neighbourhood 
configurations when performing neighbourhood analyses.  In Figure 28Figure  below, the blue pixel 
represents the focal cell while the yellow pixels constitute a 3x3 cell neighbourhood rectangle 
(inclusion of the focal cell in the neighbourhood is optional).   
 
 

 
 

 

Figure 28. Neighbourhood Function  

Similar to a local function, the operation moves on to the next cell location (designating it the focal 
cell) until all cells in a raster (or within a mask) have been addressed.  As opposed to a local 
function using multiple input rasters, a neighbourhood function uses the values from surrounding 
cells to determine the values for the derivative coverage. 
 
Neighbourhood Statistics 
Like local operations, neighbourhood functions can use the same summary statistics to generate 
output cell values.  For example, the Sum statistic could be employed to incorporate the data from 
surrounding cells into each output focal cell as shown in Figure 29 below. 
 
 

 

Figure 29. Sum-Based Neighbourhood Statistic Example 

Data Simplification 
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Data simplification (or the application of a spatial filter) is another important application of 
neighbourhood statistic functions.  This type of operation is useful when generalizing raster data 
and serves to reduce the level of variation between neighbouring cells in the input layer.  A typical 
simplification called the moving average method uses a Mean operator to calculate the average 
value on a moving 3x3 or 5x5 cell neighbourhood rectangle; the mean value derived from a 
neighbourhood is assigned to the focal cell of that neighbourhood in the output raster. Figure 
30Figure  outlines the typical statistics and their output when applying a spatial filter to a raster. 
 
 

 
 

Figure 30. Typical Spatial Filters for Neighbourhood Statistics 

No Data in Neighbourhood Statistics 
One of the practical aspects in raster data analysis relates to gaps in cell values. Such cells can be 
assigned No Data.  No Data indicates that no information or not enough information was available 
to assign the cell a numerical value (Figure 31). 
 
 

 

Figure 31. No Data Values in Raster Data 
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Cells with No Data can be processed in one of two ways when executing a local or neighbourhood 
function: 
 

1. assign No Data to output cell regardless of the combination of input cell values (i.e., as long 
as one input cell in the neighbourhood is No Data, then the output will be No Data); or 

2. ignore the No Data cell and complete the calculation without it (i.e., calculate the maximum 
value in a neighbourhood, disregarding the No Data cell). Normally, No Data cells are 
ignored (i.e., the calculation (total sum) is executed based on neighbouring cells with 
values). 

2.2.5 Zonal Functions and Statistics 
Zonal functions perform operations on zones of common cells defined in one raster to make 
calculations on another layer (based on variable shaped and sized neighbourhoods). Zonal 
operations perform a calculation on a zone, which is a set of cells with a common value. Zones 
may be continuous or non-continuous (Figure 32). A continuous zone includes cells that are 
spatially connected, whereas a non-continuous zone includes separate regions of cells.   
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 32. Zones in a Raster Dataset 

Zonal operations may be performed on a single raster layer or on two raster layers (one raster 
contains the values to be summarized and the other defines the zones). When a single input raster 
is used, zonal statistical operations measure the geometry of each zone (e.g., area, perimeter, 
thickness, centroid, etc.). When two raster layers are used in a zonal operation the operation 
produces an output raster layer which processes the cell values in the input raster as per the zones 
defined in the zonal raster layer. A zone layer defines the zones (shape, values, and locations) and 
an input value raster contains the input values used in calculating the output for each zone. Figure 
33Figure  illustrates the results of a zonal statistics operation performed on two raster inputs to 
determine the mean slope of watersheds. The zones are defined by the watersheds raster and the 
slope raster is the other input dataset. The output summarizes the mean slope for each watershed. 
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Figure 33. Illustration of Zonal Statistics 

2.2.6 Distance 
GIS gives us the ability to measure distances between features. At the simplest level distance 
statistics can be determined within the map interface through a distance query tool. The user can 
click on one location and then click on another and the distance between the two locations will be 
calculated and displayed on the screen. Typically these query tools will also allow you to draw a 
polyline on the screen and will summarize the distance for the length of the line. 
 
In vector datasets, distance measurements are typically determined between point features, either 
located in a single dataset or in multiple datasets. For example, distances between cities can be 
calculated and stored as an attribute of each city location. Distances may also be determined from 
points in a layer to the nearest point along a line (either from a polyline or the edge of a polygon). 
This type of calculation would allow you to determine the distance between an offshore water 
quality sampling location and the nearest part of a coastline. 
 
Distances are of interest in and of themselves; however, they can also be fed in as a variable when 
developing a model. For example, in a wildlife habitat model, proximity to water is critical to most 
wildlife species and therefore distance to the nearest fresh water source (e.g., a stream or lake) 
would be an important input to evaluating wildlife habitat capability. It is in these types of analyses 
that the functions available within raster data models are most useful. For example, when 
developing our wildlife habitat model we can develop a surface that specifies distance to fresh 
water sources. Details related to distance functions available in a raster environment are provided 
below. 
  
Straight Line 
Straight line distance is the physical distance between two points. It is also referred to as Euclidian 
distance. In a raster dataset, straight line distances are calculated between cells based on the cell 
centres (Figure 34). 
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Figure 34. Calculating Distance Between Raster Cells 

In Figure 34Figure  we are calculating the distance between cells 1, 1 and 3, 3 (as illustrated by the 
red line). The calculation would be conducted using the following formula: 
 

cell size x �  (3 - 1)2 + (3 - 1)2 

 

If the cell size was 10 metres the distance between the two points would be 28.3 metres based on 
the following calculation: 

 
10 x �  (3 - 1)2 + (3 - 1)2 

10 x � 22 + 22 

10 x � 4+4 
10 x � 8 

10 x 2.8284 = 28.2843 
 

This type of distance calculation illustrates how distance between raster cells is calculated but 
straight line distance functions allow us to develop output rasters that measure distance from every 
cell to source cells or points. This type of distance analysis allows us to determine the relationships 
between locations. For example, Figure 35Figure  illustrates the results of a raster developed to 
illustrate the distances between cities (the yellow points). This type of decision support information 
assists regional planners when they are locating facilities (e.g., perhaps a hospital or a recreation 
centre can service a number of smaller communities and therefore distance can be used to help 
select an optimal location for a new facility). 
 

(1, 1) 

(3, 3) 
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Figure 35. Straight Line Distance Raster Example 

Allocation and Distance 
Physical distance functions can also be used to generate allocation and direction rasters. In an 
allocation raster, the value of each cell is based on that of the closest source cell. An example of 
how an allocation raster can be applied would be an evaluation of the catchment areas for existing 
schools. The generation of an allocation raster would allow you to identify the school closest to 
each location on the map. A direction raster displays the azimuth direction from each cell to the 
nearest source. This function allows you to easily identify the direction of the nearest source 
feature (e.g., a town or a facility) 
 
Cost Weighted 
Cost weighted distance analyses calculate the cost for traveling across the landscape. This type of 
analysis allows you to identify the easiest route between two places based on other considerations 
beyond just physical distance. For example, the shortest distance between two communities may 
involve having to cross a mountain range and therefore, while the physical distance to avoid the 
mountains would increase the longer route may well have a lower cost associated with it. Typically, 
cost weighted distances involve the consideration of multiple factors, represented by numerous 
rasters. The cost represents the sum of the input raster layers. Some of the rasters may represent 
attribute values that lower distance costs (i.e., positive features) while others increase the cost. 
Costs can be represented as either actual values or as a relative numbers where factors are 
ranked relative to one another with higher numbers being associated with higher costs. The 
application of relative cost values are useful in that they allow you to standardize different cost 
types to a common scale. 
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A cost raster is generated by assembling the data associated with each of the cost factors in the 
analysis. A raster is then developed for each factor detailing a cost for each cell. The local statistics 
function may then be used to generate a derivative (output) raster that sums the total cost for each 
cell based on the various cost factor rasters. 
 
Shortest Path 
A cost raster allows you to determine the accumulated cost of a given route and evaluate the 
shortest path (the path with the lowest associated cost). The cost is determined by summing the 
costs associated with the links between adjacent cells (horizontal, vertical and diagonal). To 
determine the shortest path we must first calculate the costs between all the linked cells. We then 
select a source cell (the starting point) from which the cost associated with movement to that cell’s 
adjacent cells is determined. The adjacent cell with the lowest cost then represents the next cell 
along the route. The cost of progressing to that cell’s neighbours is then added to the total cost. 
The shortest path is the result of this iterative calculation. 
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2.3  Generalizing Data 
Data can be generalized both physically (e.g., the shape or appearance of a feature can be 
altered) or through the classification and resultant summary of attributes (e.g., attributes can be 
grouped into more general classes). The following sections detail some generalization techniques 
that can be applied to vector and raster datasets. 

2.3.1 Vector Data 

Dissolve 
The dissolve function merges features having common attributes (Figure 36). It can be used for two 
fundamental applications: 

 
�  It allows you to simplify a classified dataset into more generalized classes. For example, 

land use polygons can be aggregated based on land use values (e.g., roads, buildings and 
paved areas could be grouped into an all-encompassing class called urban).  

�  It can be used to remove boundaries between polygons having identical attributes in a given 
field. For example, if you have merged datasets from different sources the resulting product 
may have a number of slivers or overlapping values. The dissolve function will allow these 
unnecessary boundaries to be removed from the dataset. 

 
Dissolve can also help us summarize data because while merging the polygons we can also 
aggregate mathematical data. For example, using the dissolve described above to create an urban 
land use class we can easily determine the total area of all urban features from the resulting 
dissolved coverage. In addition, other related attributes (e.g., population values, annual incomes, 
birth rates) can be aggregated. For example, if annual income is an attribute available for a set of 
municipalities in a city, we can determine the total and/or average income for the entire city (or a 
group of municipalities within the city) during the dissolve by summing and averaging the income 
attribute. 
 
 

 
Input layer                   Output layer  
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Figure 36. Dissolve Example 

Eliminate 
The eliminate function is another means of generalizing data – a new layer is created by merging 
selected polygons (based on a query or selection set) with neighbouring polygons. Eliminate is 
described in detail in Section 5.1.2 above.   
 
Simplify Line 
The process of simplifying a line involves the removal of small bends in the line. This is 
accomplished by removing some of the points (or vertices) within the line. The result is a 
generalized version of the feature (Figure 37) that maintains the general shape of the original 
version. Lines are simplified to improve cartographic display, for example, a detailed line digitized 
at a scale of 1:20,000 might have so much detail it appears fuzzy when plotted at a scale of 
1:100,000. In addition, more complex lines increase the processing times associated with various 
analyses (e.g., buffering) and often simplifying a feature prior to a buffer analysis will not affect the 
accuracy of the resultant buffer polygon.  
 
When simplifying a line it is important to specify the degree of simplification to ensure the resultant 
feature resembles the original feature. This is done by selecting an analysis tolerance at a scale 
appropriate to the source data. For example, when the goal is to improve the cartographic display 
of the data, the tolerance should be set equal to, or greater than, the minimum allowable spacing 
between graphic elements. Some trial and error may be required when selecting a tolerance 
appropriate for all features in a dataset. 
 
 

 

Figure 37. Simplify Line Example 

Smooth Line 
Lines are smoothed to improve their cartographic appearance, for example, jagged features are 
removed to make the line more aesthetically appealing (Figure 38). It is accomplished by reshaping 
the line through the application of a mathematical formula that generates new vertices (points) that 
are inserted into the line. There are a variety of different algorithms that can be applied including: 
 

�  Polynomial Approximation with Exponential Kernel (PAEK) calculates the smoothed version 
of the line using a parametric continuous averaging technique. The placement of additional 

Input Output 
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points in the lines is based on a weighted average of the coordinates for all the points in the 
original feature. Points closer to the current coordinate are weighted more than points further 
away. The resulting line may not contain any of the vertices present in the original feature 
with the exception of the start and end points. 

�  Bezier Interpolation fits Bezier curves along each line segment of the original feature and 
then the curves are connected at the vertices through the application of the Bessel Tangent 

 
As when simplifying a line, it is important to select an appropriate tolerance for the analysis to 
ensure the desired results are achieved. In line smoothing, the tolerance specifies the length of a 
moving path along the line used to calculate the new ‘smoothed’ coordinates – a higher tolerance 
results in a longer path (i.e., more points are factored into the result) and therefore yields a 
smoother line. Again a certain level of trial and error should be applied when selecting a tolerance 
level to ensure important characteristics (e.g., bends) are not removed. 
 
 
 
 

 

Figure 38. Smooth Line Example 

2.3.2 Raster Data 
Raster data can often contain data that is overly detailed or extraneous to a current analysis. For 
example, a land cover dataset derived from a satellite image may have numerous small groups of 
cells that are either misclassified or represent too small an area to be of statistical relevance. 
Generalization techniques, when applied to these types of examples, allow you to automate the 
removal of these types of regions within a raster dataset. 
 
Aggregate 
Aggregation is a resampling technique that allows you to generate a lower resolution grid (a grid 
with larger cell sizes) based on the attributes of an input grid. The values for each output cell can 
be based on the mean, median, sum, minimum or maximum of the input cells falling within the 
extent of the output cell. Figure 39Figure  provides an illustration of an aggregation analysis where 
the resulting output grid is based on the mean of the input dataset. 
 
 

Input Output 
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Figure 39. Aggregate Example 

Aggregate could be used to generalize a detailed grid depicting temperature values to derive a 
simplified mean temperature value for a large area. 
 
 

1 1 

3 3 
2 

Input grid Output grid 
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Boundary Clean 
Boundary clean can be used to smooth the boundaries between regions. It cleans boundaries on a 
relatively large scale by making a series of passes through the data – the first pass involves an 
examination of cells outside the region and the second considers cells inside the region. Basically 
all regions of less than a three by three block of cells will have their values updated based on the 
values of surrounding cells. During the ‘outside pass’, regions outside the current region (one cell 
in each direction) are assigned values based on the values of neighbouring higher priority zones. 
On the ‘inside pass’, cells that are not completely surrounded by cells of the same value are then 
evaluated and may then be replaced with the values of surrounding cells. It should be noted that 
thin portions of regions may be replaced, for example a region representing a linear feature (e.g., a 
river that is numerous cells long but only two cells wide) will be removed. 
 
Expand 
Expand allows specified regions within a raster dataset to be expanded based on a user-specified 
number of cells. Cells with lower priority values (determined by the user) are labelled as 
background cells. Cells with a higher priority (foreground cells) are allowed to expand into regions 
of low priority. The technique would be useful to remove no data values from a raster dataset by 
allowing cells with surrounding values to expand to ‘fill’ the no data locations. 
 
Filtering 
Spatial filtering is designed to highlight or suppress specific features in an image based on their 
spatial frequency. Spatial frequency is related to the concept of image texture. It refers to the 
frequency of the variations in tone that appear in an image. ‘Rough’ textured areas of an image, 
where the changes in tone are abrupt over a small area, have high spatial frequencies, while 
‘smooth’ areas with little variation in tone over several pixels, have low spatial frequencies.  
 
In practical implementation, filters are applied to the source raster by means of moving windows 
(kernels). A common filtering procedure involves moving a �window� of a few pixels in dimension 
(e.g., 3x3, 5x5, etc.) over each pixel in the image, applying a mathematical calculation using the 
pixel values under that window, and replacing the central pixel with the new value. The window is 
moved along in both the row and column dimensions one pixel at a time and the calculation is 
repeated until the entire image has been filtered and a ‘new’ image has been generated. By 
varying the calculation performed and the weightings of the individual pixels in the filter window, 
filters can be designed to enhance or suppress different types of features. The moving window 
process is illustrated in Figure 40. Typically a kernel shape is square or rectangular, but circles and 
annuli are also used.  
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Figure 40. Moving Window Process 

Filtering is widely used in many raster data analyses. Generic applications might include edge 
detection, blurring (smoothing), and noise removal. Noise may be erroneous data values, or spikes 
that can be removed from the data.  For example, spikes in a digital elevation model (DEM) may be 
removed through 3x3 median filtering. 
 
Thematic applications of filtering include: surface slope and aspect calculations using a DEM, 
calculations of weighting functions for advanced multi-criteria raster analysis and many others. 
 
The majority filter function generalizes data by replacing cells in a raster dataset based on a values 
present in the majority of the cell’s surrounding values. Two criteria must be met before a cell’s 
value will be replaced: 
 

�  there must be a large enough number of surrounding cells (e.g., more than half) with a 
common value; and 

�  the cells having a common value must be spatially connected (e.g., contiguous) around the 
centre of the filter kernel. This criterion minimizes the potential corruption of spatial patterns 
in the data. 

 
Nibble 
The nibble function can be applied to edit portions of a raster dataset where the values are known 
to be incorrect or missing (e.g., areas of no data). A query or selection set is first applied to select 
the cells in the grid that are to be replaced. A mask is applied to specify the extent of the analysis – 
selected cells falling within the mask will be the ones replaced. The selected cells are then 
reassigned the values of their nearest neighbours through a Euclidean Allocation (cells are 
allocated based on closest proximity using a Euclidian distance (a straight-line). 
 
Region Group 
A scanning process is applied (similar to a moving window analysis) to assign a unique number to 
those cells falling within each region of a raster dataset. The resultant (output) dataset contains 
unique values for each unique region (Figure 41). The values assigned cannot be controlled by the 
user. The region group function allows you to examine potential spatial patterns in your data by 
helping you identify unique regions or zones. 
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Figure 41. Region Group Example 

Shrink 
Shrink allows you to change the values of spurious cells along the boundaries of regions based on 
the highest frequency value among the cell’s surrounding cells. Shrink replaces the values for cells 
that are not internal cells (e.g., they are not completely surrounded by adjacent cells. It should be 
noted that thin portions of regions may be replaced, for example a region representing a linear 
feature (e.g., a river that is numerous cells long but only two cells wide) will be removed.  
 
Thin 
The thin function allows you to reduce the number of cells required to represent linear features in a 
raster dataset. For example, a paper map scanned at a high resolution would potentially represent 
linear features by a region numerous cells wide (e.g., a single-line river on the source hard copy 
could appear in the raster as a region 5 cells wide and 200 cells long). Thin would allow you to 
reclassify the cells in the raster resulting in the river in our example being represented by a region 
now a single cell wide by 200 cells long. 
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Self-Test Questions 
 
1. Describe the difference between the Contributory Rule and the Dominance Rule for use in 

combining attribute values during overlay. 
 
2. You wish to determine the ratio of agricultural lands lying within 500m of streams to agricultural 

lands lying more than 500m from streams. To do this, you have two vector polygonal layers: 
polygons delineating agricultural land, and 500m buffer polygons generated from a streams 
layer.  Is it appropriate to use the Intersect form of a vector overlay to arrive at the necessary 
ratio?  Why or why not? 

 
3. Describe the difference between a local, focal and zonal operation on raster layers. 
 
4. Why might you use the Smooth function on a linear feature class? 
 
5. Does executing a 3x3 mean filter on a raster grid have the effect of smoothing out extreme 

values, or  does it enhance extreme values in the raster?  Why? 
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3 Spatial Statistics 
 
The most frequent method of reducing large quantities of data into a manageable amount of 
information is through the use of statistical analysis.  Broadly defined as the collection, analysis, 
interpretation or explanation, and presentation of data, statistical analysis can provide valuable 
information from vast arrays of data. 
 
Though there are many forms of statistics, two classifications of statistics are classical statistics 
and spatial statistics.  Classical statistics is the set of methods that most people come across in 
government reports, sports numbers, academic research, and the media.  These methods, as with 
all statistical methods, have restrictions on their applicability, limiting the ways in which classical 
statistics may be applied.   
 
One of these restrictions is the independence of observations.  This simply means that one 
observation is not related to another: the information from one observation gives you no 
information about another observation.  This restriction is most often violated in the context of 
spatial data.   
 
The first law of geography, usually referred to as Tobler’s Law, states that "[e]verything is related to 
everything else, but near things are more related than distant things" (Tobler 1970: 236).  This 
means that the information given regarding one location can be used to know information regarding 
another location, with that information’s value decreasing as the two locations become further 
apart. 
 
Because of this violated restriction a whole branch of statistics has emerged to deal with this lack of 
independence of observations.  This module introduces some of these spatial statistical methods, 
with application using crime data in Lithuania measured at the municipal level. 
 
The following six topics of spatial statistics are examined in this module: 
 

Topic 1: Classical Correlation, Spatial Autocorrelation, and the Location Quotient 
Topic 2: Modifiable Areal Unit Problem and the Ecological Fallacy 
Topic 3: Pattern Analysis 
Topic 4: Edge Effects 
Topic 5: Density Estimation and Hot Spot Mapping 
Topic 6: Local Spatial Statistics 
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3.1.  Classical Correlation, Spatial Autocorrelation, and the Location Quotient 

3.1.1. Classical Correlation 
In previous modules you have covered the measurement of the mean (averages) and standard 
deviation (how much a variable varies).  Correlation, however, is a measurement of the relationship 
between two variables.  Essentially, when investigating correlation, you are asking, for example: 
what will happen to the crime rate when the level of police activity changes?  These two variables 
are quite related, as one would expected—the more crime there is the greater the need for police 
officers—but a few concepts need to be covered to allow proper interpretation of the classical 
correlation output. 
 
First, when analyzing data using classical correlation, you are interested in know IF two variables 
are related.  Just because two variables are correlated does not mean that there is an actual 
relationship between two variables.  In a very humorous paper, an economist showed that there is 
a strong relationship between the national inflation rate and dysentery, so it is important that 
correlations are interpreted carefully and that the two variables you choose to correlate should be 
related to each other. 
 
Second, when two variables move in the same direction (either increase or decrease) the two 
variables are said to be positively correlated.  It is a little confusing to think of two variables being 
positively correlated when they are both decreasing, but this is just the terminology.  When one 
variable goes up and the other goes down, the two variables are said to be negatively correlated.  
These two types of correlation are shown in Figure 1. 
 

Positive Correlation Negative Correlation 

  

Figure 1. Classical Correlation 

The calculation of classical correlation is as follows: 
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Where r is called the correlation coefficient, xi and yi are the individual observations, x and y with 
the lines on top of them are the means of the two variables, n is the sample size, and Sx and Sy are 
the standard deviations of the two variables.  This calculation generates a number that ranges from 
-1 to +1, with the positive numbers referring to positive correlation and the negative numbers 
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referring to negative correlation.  If the value is zero, there is no correlation.  There are some links 
to further reading on the Internet, for those interested, listed in the Additional Resources section 
below. 

3.1.2. Spatial Autocorrelation 
Spatial autocorrelation is the spatial equivalent to classical correlation, with the primary difference 
being that when spatial autocorrelation is calculated the observations are always referring to 
explicitly spatial observations.  Rather than asking what happens to one variable when another 
variables changes, spatial autocorrelation asks: how similar are neighbouring spatial units to one 
another with regard to some variable?  For example, if one municipality has a high level of income, 
do its neighbouring municipalities also have a high level of income? 
 
The biggest difference when making the calculation for spatial autocorrelation, compared to 
classical correlation, is that the neighbours of spatial units must be specified in order to calculate 
spatial autocorrelation.  There are two dominant methods to determine whether or not two spatial 
units are neighbours: distance and contiguity.  Distance, most often used in point pattern analysis, 
simply states that if one point is within some distance of another point they are neighbours.  The 
distance used depends on the phenomenon being measured and the context of the study.  
Contiguity is simply a measure of whether or not two areal spatial units are next to each other.  For 
example, Lithuania and Poland share a national border, so they are contiguous.  What becomes 
important is the order of that continuity.  The following example provides an explanation. 
 

 

Figure 2. Specifying Spatial Neighbours 

The spatial unit of interest is labelled as “A”.  All of the other spatial units are labelled according to 
their level of contiguity with “A”.  All those spatial units that share a boundary with “A”, even if that 
shared boundary is at a corner, are considered to be contiguous if order 1, labelled “A1”.  This is 
called Queen’s contiguity, referring to the movement of the Queen in a game of chess.  Those 
spatial units that have two boundaries between them and “A” are considered contiguous of order 2, 
labelled “A2”.  This may be continued as distant as the researcher considers necessary, but most 
research uses contiguity of order 1, particularly in descriptive analyses such as spatial 
autocorrelation.   
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However, a different measurement of contiguity, Rook’s contiguity, does not consider a spatial unit 
with a shared boundary only at a corner to be considered contiguous.  Most often, Queen’s 
contiguity is used with vector data because most social-economic-political spatial units are not 
square or rectangular.  Also, using Queen’s contiguity allows for the researcher to not violate 
Tobler’s First Law of Geography.  It is also important to note that other measures of contiguity are 
possible and these can affect the spatial analysis: neighbours may be based on the length of 
common shared borders between spatial units or bi-directional weights based on the flow of 
individuals into and out of adjacent spatial units.  For example, to continue with the national 
examples, the international border shared between Lithuania and Latvia is longer than that of 
Lithuania and Poland, but Poland has a much larger economy.  As such, the measurement of 
neighbours (and their respective importance) depends on the context.  However, for most analyses 
first order Queen’s contiguity is used. 
 
The calculation of spatial autocorrelation is most often undertaken with Moran’s I: 
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where the variables representing n and y are the same as above and wij represents a matrix that 
defines the spatial neighbours of the spatial units.  The actual formula is rather complicated and not 
particularly important to understand at this stage because many software programs, including 
ArcGIS, make these calculations for you.  It is important to note that there are some similarities 
between the formula for Moran’s I and for classical autocorrelation.  The primary difference is that 
only one variable is analyzed with spatial autocorrelation.  The spatial autocorrelation occurs 
between the spatial units, not different variables. 
 
Moran’s I has ranges from -1 to +1, just as with classical correlation.  This is primarily the reason 
why Moran’s I is favoured over Geary’s C—this latter measure of spatial autocorrelation does not 
have the same numerical similarity to classical correlation.  For Moran’s I, a value of zero means 
there is no spatial autocorrelation, a value greater than zero means that there is positive spatial 
autocorrelation, and a value lesser than zero means that there is negative spatial autocorrelation.  
So, when spatial autocorrelation is positive, the most often phenomenon when investigating social-
economic-political spatial units, neighbouring spatial units have similar values.  However, when 
spatial autocorrelation is negative, neighbouring spatial units have dissimilar values. 

3.1.3. The Location Quotient 

The location quotient is a relatively new descriptive measure in statistics.  Traditionally used in 
economic geography to measure employment or industrial specialization since the 1940s (Isard et 
al. 1998; Miller et al. 1991), the location quotient has more recently been used in the spatial 
analysis of crime (Brantingham and Brantingham 1995, 1998).  Well-known to many geographers, 
the location quotient measures the percentage of some activity in a spatial unit relative to the 
percentage of that same activity in the entire study region.  This measurement of the under- or 
over-representation of an activity has great utility in any type of analysis that may show some 
regions having a high representation of a particular activity relative to other regions.  Given the 
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availability of crime data for Lithuanian municipalities, the location quotient’s utility is shown in this 
context. 
 
The location quotient is calculated as follows: 
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where Cin is the count of crime i in spatial unit n, Ctn is the count of all crimes in spatial unit n, and 
N is the total number of spatial units.  In the context of this example, the location quotient is a ratio 
of the percentage of a particular type of crime in a municipality of Lithuania relative to the 
percentage of that same crime in all of Lithuania.  If the location quotient is equal to one, the 
municipality has a proportional share of a particular crime; if the location quotient is greater than 
one, the municipality has a disproportionately larger share of a particular crime; and if the location 
quotient is less than one, the municipality has a disproportionately smaller share of a particular 
crime. 
 
Consider the following example for Lithuanian municipalities.  As shown in Figure 3, break and 
enter is not a significant problem for most Lithuanian municipalities: the legend, omitted here for 
brevity, goes from green (low crime) to yellow (moderate crime) to red (high crime).  There are a 
few municipalities that have moderately high break and enter rates, but for the most part, it is not a 
problem in the majority of Lithuanian municipalities. 
 
The location quotient provides a different picture of break and enters.  Clearly there are some 
municipalities that are overrepresented (red) with regard to Lithuania as a whole.  Though most of 
these municipalities are identified with higher break and enter crime rates, now some other 
municipalities appear to be overrepresented.  Moderate overrepresentation (orange) is present for 
many municipalities that are considered to have low crime rates.  This does not mean that these 
municipalities are not safe, crime is a phenomenon that occurs at all places and all times, but it 
does show that some municipalities are more popular for break and enters than others.  This 
becomes important information to policymakers because existing police and crime prevention 
resources should be more focused on break and enters in these municipalities—this does not 
necessarily mean that more of these resources need to be allocated.  The application of the 
location quotient is applicable to any phenomenon that may specialize in particular places, which is 
most of human activity. 
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a) Crime Rate per 10 000 population 

 
b) Location Quotient 

 

Figure 3. Break and Enter, Lithuanian Municipalities 
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3.2.  Modifiable Areal Unit Problem and the Ecological Fallacy 

3.2.1. The Modifiable Areal Unit Problem 

The modifiable areal unit problem (MAUP) is endemic to all spatial data that has been aggregated 
into polygons.  First outlined by Openshaw (1984), the MAUP is quite simply that the results of an 
analysis will be sensitive to the spatial units that are used.  For example, using municipalities and 
counties in Lithuania for an analysis will necessarily give different results, perhaps completely 
opposite results—hence, the MAUP being a problem.  There are two effects from the MAUP: the 
scale effect and the aggregation or zoning effect. 
 
The scale effect was just mentioned above regarding the use of municipalities and counties in the 
same analysis.  Simply put, (spatial) statistical results may change depending on the spatial 
resolution of the data.  Generally speaking, the larger the area of a set of polygons, the more likely 
they are to be of similar value and, consequently, highly correlated.  This is because the larger 
spatial unit is an average of its constituent parts.  Let us assume that there is a high degree of 
variability in unemployment across Lithuanian municipalities and that each county contains 
municipalities that have both high and low levels of unemployment.  Once the municipalities are 
aggregated into counties, it is possible that all the counties will appear to have similar levels of 
unemployment simply because the variability has been averaged out.  
 
The aggregation or zoning effect occurs when statistical results change because of the 
methodology used to form the areal spatial unit.  Again, let us consider the case of Lithuanian 
counties and municipalities.  Each of the current ten counties has a given geographical area.  Now 
suppose that the municipalities in each of the counties were “shuffled” such that each county now 
had a different set of municipalities, but the geographical area within each county is essentially 
unchanged—some small changes in the geographical areas may be unavoidable.  By maintaining 
the same geographical size of each county the scale effect is avoided.  However, because the 
municipalities in each of the counties are now different, statistical results comparing counties will 
also change. 
 
In short, through the alteration of the number and arrangement of the spatial units a completely 
different set of results may be generated in an analysis.  

3.2.2. Minimizing the Modifiable Areal Unit Problem 

The MAUP occurs for a very simple reason: most of the spatial units we analyze are defined for us 
and statistical analyses of these spatial units were not considered.  For instance, in Canada, voting 
districts are most often realigned to favour the governing political party when the voting districts 
need to be changed.  Though this may serve a political purpose, it creates “false” spatial units for 
subsequent analysis. 
 
The MAUP can only truly be minimized if the spatial units of analysis are specifically the 
appropriate units for a given analysis.  In other words, the MAUP will disappear once we know the 
“true” spatial units.  Of course, such a level of knowledge, if ever attained, will be different for every 
analysis: meaningful areal units for unemployment will necessarily be different from meaningful 
areal units for heart attack risk.  The difficulty is: what do we do given that we know it is a problem 
and we do not currently have a solution? 
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The simple answer to this question is to do as many analyses as possible using different spatial 
units.  If all of the analyses produce the same (or very similar) qualitative and quantitative results, 
then there is little to worry about—for example, all correlations would be positive and approximately 
the same magnitude.  If all of the analyses produce qualitatively similar results (all have positive 
correlations), but the magnitude of these results have a range then err on the side of caution and 
do not make any overstatements regarding the relationship between two variables.  If, in the worst 
case scenario, there is absolutely no consistency in the results (correlations are positive and 
negative, and of varying magnitudes) then simply do not trust the results.  More analysis with 
different spatial units, variables, or a longer time series is necessary.  Any policy based on such 
results will most probably be ill-informed. 
 
Unfortunately, most analyses only have one choice of spatial units to analyze.  When this situation 
occurs, as it most certainly will, the results must be interpreted with caution noting that they may be 
sensitive to the particular spatial units analyzed. 

3.2.3. The Modifiable Areal Unit Problem and the Ecological Fallacy 

The ecological fallacy is usually grouped together with the modifiable areal unit problem, as it is 
here, but it is a different issue that arises, particularly with geographical data.  First noted by 
Robinson (1950), the ecological fallacy occurs when the results of an analysis at one spatial 
resolution is inferred to mean something at another spatial resolution.  For example, consider a 
county with two municipalities.  The county has an average monthly income of 1000 LTL.  From 
this statistic, one can then infer that the average monthly income in each of the two municipalities is 
also 1000 LTL.  However, in reality, the two average monthly incomes may be 500 and 1500 LTL.   
 
The ecological fallacy then reduces to the fallacy of division: what is true of the whole is also true of 
its parts.  However, one only needs to view his or her own neighbourhood to notice a wide ranging 
variation in monthly incomes such that any average is not representative of anyone.  As such, what 
is true of the whole is not necessarily true of the part. 
 
What can be done to avoid the ecological fallacy?  Unlike the MAUP, the ecological fallacy is easily 
avoided through careful and thoughtful statements regarding inference.  If your analysis only 
assesses counties, then any inference you make can only involve counties, similarly for 
municipalities, neighbourhoods and individuals.  All too often academic research, government 
research, and the media commit the ecological fallacy.   
 
One of the troubles with recognizing the ecological fallacy is that it occurs without the use of spatial 
units, the most obvious and visible form of the ecological fallacy.  Groups of people, defined by any 
social characteristic, may have an average tendency such as high intelligence.  This, however, 
does not mean that every member of that group of people is highly intelligent. 
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3.3.  Pattern Analysis 

3.3.1. Uniform, Random, and Clustered Distributions 

The spatial patterns of both social and natural phenomena are of prime interest to people working 
in a variety of different work settings (government, academic, and private enterprise) as well as 
people working within or from a variety of disciplines—though primarily thought of as the realm of 
geography, pattern analysis is also prominent in the fields of ecology (or biology, more generally), 
medicine and public health, and statistics. 
 
In the study of patterns, there are three general forms of spatial distributions: uniform, random, and 
clustered, all shown in Figure 4.  It should be noted that although the patterns represented in 
Figure 4 are in point form and that the discussion regarding pattern analysis presented here is also 
in regard to points, there are methods of pattern analysis for spatial units represented as polygons.  
However, pattern analysis is traditionally in the realm of points so point pattern analysis is dealt 
with in this section of the module.  Cluster analysis using areal spatial units is undertaken in Topic 
5, below. 
 
Figure 4a represents a uniform distribution of points.  Sometimes referred to as a dispersed point 
pattern, a uniformly distributed point pattern exhibits a systematic spatial process that dictates the 
location of each point.  In other words, if you know the location of one point and know the nature of 
the spatial process, you can perfectly predict where all of the other points in the pattern are going 
to be.  In the case of Figure 4a, each point is one unit up (or down) and to the right (or left) of any 
point in the distribution.  Such spatial point patterns rarely occur naturally, most often the result of 
human engineering.  A prime example of such a pattern would be traffic lights at the intersections 
of a rectangular street network, most often referred to as a Manhattan grid.  On such a street 
network, street are set out to be at equal intervals in both directions (north-south and east-west) so 
traffic lights at the intersections will produce a uniformly distributed spatial point pattern. 
 

a) Uniform b) Random c) Clustered 

  

 

Figure 4. Uniform, Random, and Clustered Point Patterns 

The randomly distributed spatial point pattern, Figure 4b, exhibits to dominant trend.  With such a 
spatial point pattern, knowing where one point is located provides no indication of where other 
points are located—you are just as likely to find another point blind-folded with your finger than you 
are with any mathematical calculations.  These spatial point pattern distributions are the products 
of what is called a Poisson process.  This allows for easy testing of this hypothetical distribution. 
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Lastly, shown in Figure 4c, there is the clustered spatial point pattern distribution.  With this spatial 
distribution, the density of points varies to a high degree because some areas have the majority of 
the points and other areas have none of the points.  As such, the prediction of other points can 
take place because if you are at a location that has a point, other points are likely to be close by, 
and if you are at a location with no points, there are likely no other points close by.  Such a 
clustering of points may represent, for example, the location of retail outlets in a central business 
district or the outbreak of disease related to an environmental toxin with a fixed source. 
 
Two forms of pattern analysis are outlined below.  The first, and most common, is nearest 
neighbour analysis that uses the distances between points to determine whether or not a spatial 
point pattern has a particular distribution.  The second, quadrat analysis, places the points within 
areal units to assess the form of spatial distribution.  
 
It should be noted that in much of this literature a “point” means any location on a map and an 
“event” is a point on the map where something has occurred and is represented by a dot: a case of 
disease, a crime, or a traffic accident.  Though for the remainder of this topic the term “point” is 
used, this difference become important when discussing edge effects in the following topic. 

3.3.2. Nearest Neighbour Analysis 

A nearest neighbour analysis measures the distance between a point and its “nearest neighbour”, 
calculates the average nearest neighbour distance for all points in the data set, and then compares 
this average nearest neighbour distance to an expected average distance, such as a random 
(Poisson) probability distribution.  The distances between points and their nearest neighbours are 
measured using Euclidean distance, or straight line distance.  This measurement of distance has 
an advantage as well as limitations.  The advantage is that the calculations are simple, as shown 
below, using an equal interval grid and a little geometry.  However, the limitation is that Euclidean 
distance is not always realistic for human settlement patterns.   
 
For example, as shown in Figure 5, there may be two dead-end streets (cul-de-sacs) that are 
separated by a park.  For simplicity, consider that the residences on either side of the park are not 
even able to see each other because of trees, etc., but that the residences are actually quite close.  
Using Euclidean distance to measure the distance between two points may place the two 
residences on either side of the park as nearest neighbours when the actual network distance 
between these two residences (a more realistic measure of distance in this situation) may in fact be 
quite long.  Of course, these network distances may be used in a nearest neighbour analysis.  The 
essence of the analysis remains the same, but the calculation of distance becomes more 
computationally intense.  The standard Euclidean distance is used in the example below. 
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Figure 5. The Problem with Euclidean Distance 

In order to ascertain which type of spatial pattern is apparent in a spatial point pattern, a number of 
simple calculations need to be undertaken.  First, the average nearest neighbour distance: 
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where NNDi is the nearest neighbour distance for point i an n is the number of points.  Note that if 
the spatial point pattern is perfectly clustered, meaning that all points are in one location, then the 
value of NND* is zero.  Second, the expected average nearest neighbour distance for a random 
spatial distribution needs to be calculated: 
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where Density is the number of points divided by the area under study.  These two variables are 
then used to calculate the standardized nearest neighbour index (R): 

RNND
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in order to determine the nature of the spatial point pattern.  A property of the standardized nearest 
neighbour index, R, is that it has a defined range (0 – 2.149) that allows for the following 
classification: 
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Table 1. Classification Scheme for the Standardized Nearest Neighbour Index, R 

Perfectly 
clustered 

More clustered 
than random 

Random More dispersed 
than random 

Perfectly 
dispersed 

R = 0 R = 0.5 R = 1 R = 1.5 R = 2.149 
 
Most often, a descriptive classification is not sufficient for an analysis, so inferential statistical 
testing is necessary to determine the nature of the spatial point pattern.  In such a test, the null 
hypothesis is that the spatial point pattern is random, using the following test statistic: 
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Using a one-tailed statistical test and a probability value of 10 percent p-value = 0.10), the critical 
value for ZNND is approximately 1.28.  Therefore, if ZNND > 1.28 the spatial point pattern is 
significantly more dispersed than random, and if ZNND < -1.28 the spatial point pattern is 
significantly more clustered than random, and if -1.28 < ZNND < 1.28 the spatial point pattern is 
insignificantly different from a random Poisson spatial process.  The following example illustrates 
an application of nearest neighbourhood analysis and its statistical analysis. 
 
Figure 6 shows the locations of five (5) points in a study area that appear to be in somewhat of a 
clustered spatial pattern.  The area for this study area is 100: 10 * 10 units. 
 
 

 

Figure 6. Location of Points for Nearest Neighbour Analysis 

The points, their spatial coordinates, nearest neighbour, and nearest neighbour distance area all 
reported in Table 2. 
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Table 2. Coordinates and Nearest Neighbour (NN) Information 

Point X Y NN NND 
A 2 2 B 2.24 
B 4 3 C 2 
C 4 5 B 2 
D 6 2 E 1 
E 6 1 D 1 
 
From these numbers, the remaining variables are easily shown to be: NND* = (8.24)/5 = 1.648, 
NNDR = 1 / (2*sqrt(Density)) = 1/(2*sqrt(5/100)) = 1/(2*sqrt(0.05)) = 2.236, and R = 1.648  / 2.236 = 
0.737.  Consistent with the observation above, this spatial point pattern is more clustered than 
random.  The question now is whether or not that spatial clustering is statistically significant.   This 
question is answered through the calculation of ZNND = (1.648 – 2.236) / 0.523 = -1.13.  
Consequently, the null hypothesis of a spatially random distribution cannot be rejected with this 
statistical test.  Therefore, though the distribution above appears to be more clustered than 
random, this is not the case statistically. 

3.3.3. Quadrat Analysis 
Quadrat analysis is an alternative methodology used in order to determine the nature of a spatial 
point pattern distribution.  However, rather than focussing on the distances between points, the 
frequency or number of points within a given area is used.  In this form of pattern analysis a set of 
quadrats, most often square cells are superimposed over the study area and the number of points 
within each quadrat is counted.  The nature of the spatial point pattern distribution is then 
determined through an analysis of the frequency of the counts in each of the square cells. 
 
Generally speaking, if each of the cells contains the same number of points (no variability), then 
the spatial point pattern distribution is considered to be uniform, or dispersed; if the cells contain 
very different numbers of points (large variability), then the spatial point pattern distribution is 
considered to be clustered; and if there is a moderate amount of variability in the number of points 
in each of the square cells, the spatial point pattern is considered to be random.  These differences 
are shown in Figure 7. 
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a) Uniform b) Random c) Clustered 

 
 

 
 

 
 
 

Figure 7. Quadrat Analysis of Spatial Point Patterns 

Though the different types of variability just above are quite present in Figures 7a – 7c, as with the 
nearest neighbour analysis discussed in the previous section the spatial point pattern distribution 
must be determined statistically if any inference is to be drawn from an analysis.   
 
Though similar in form, the statistical test in quadrat analysis is simpler to execute than in nearest 
neighbour analysis.  The only statistics needed are the mean (or average) cell frequency and the 
variance of the cell frequency, both classical descriptive statistics.  Using these two variables, the 
following statistic is calculated: 

sfrequencie cell  theofMean 
sfrequencie cell  theof Variance

�VMR , 

where VMR is an acronym for variance-mean ratio.  If the VMR is equal to one, the spatial point 
pattern distribution is considered to be random; if the VMR is greater than one, the spatial point 
pattern distribution is considered to be more clustered than random; and if the VMR is less than 
one, the spatial point pattern distribution is considered to be more dispersed than random.  The 
test statistics is a chi-square: 

� �12 �� mVMR� , 
where m is equal to the number of cells and the null hypothesis is a random spatial distribution.  
Given that the variance of the number of points in each cell of Figure 7a is zero, as an example, 
the statistical tests will be carried out using Figures 7b and 7c.  The necessary variables are 
provided in Table 3. 
 

Table 3. Required Information for Quadrat Analysis of Spatial Point Patterns 

 Figure 7b Figure 7c 
Variance of cell frequencies 2.5 21 
Mean of cell frequencies 3 3 
VMR 0.833 7 
� 2 statistic 6.67 56 
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As shown in Table 3, Figure 7b shows definite signs of being a random spatial distribution, but 
does show some evidence of being more dispersed than random.  The results for Figure 7c, 
however, show a clear degree of clustering with a chi-square statistic that easily rejects the null 
hypothesis of a random spatial distribution—the relevant degrees of freedom for the critical values 
is seven, nine observations minus the two parameters calculated (mean and variance).  With a chi-
square statistic of 6.67, the spatial distribution of points in Figure 7b is not significantly different 
from a random spatial distribution.  As such, each of the examples shown in Figure 7 correspond 
statistically with the appearances of their spatial point pattern distribution. 

3.3.4. Limitations of Pattern Analysis 

As with any form of statistical analysis, spatial or classical, pattern analysis has its limitations.  The 
primary limitation of these analyses is that they do not tell the researcher why there is or is not a 
particular spatial distribution.  Rather, these tests simply allow us to know what the particular 
spatial distribution is or is not.   
 
A further difficulty that is spatial is in regard to the size of the study area.  Consider the spatial point 
patterns displayed in Figure 8.  Figure 8a shows what is perceived to be a random spatial point 
pattern whereas Figure 8b shows what is perceived to be a clustered spatial point pattern.  The 
difficulty that is present is that these are precisely the same spatial point patterns shown at different 
scales: Figure 8a is at a cartographically larger scale (smaller area) than Figure 8b.   
 
Suppose you were investigating the impacts of an environmental toxin that is released into the air 
from an industrial plant at the centre of the spatial point pattern.  If one were to analyze the effect of 
this environmental toxin and a corresponding disease at a scale equivalent to that of Figure 8a 
then the industrial plant that produces the environmental toxin would not be viewed as problematic.  
However, if the scale of analysis was changed to that of 8b, and consider this scale appropriate for 
the problem at hand, then the industrial plant may be shown to be the cause of the corresponding 
disease.   
 
The problem is knowing the appropriate scale of analysis.  Sometimes this may be relatively easy: 
there may be a scientific consensus regarding the problematic concentrations of the environmental 
toxin in the atmosphere.  The concentrations of the environmental toxin could simply be measured 
at various distances from the industrial plant and have the study area circumscribed based on that 
information.  Not all such problems are resolved so “easily”, however.  The most appropriate action 
to undertake in such a situation would be similar to that for the modifiable areal unit problem, in 
general: undertake the analysis at a number of scales that may be applicable and look for 
consistency in the results. 
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a) Random? b) Clustered? 

 

 

 

Figure 8. The Difficulty with Scale in Pattern Analysis 

 
 
 



Spatial anglysis and modeling 

© National Land Service under the Ministry of Agriculture, 2007 
98 

3.4.  Edge Effects 

3.4.1. What is an Edge and When Does it Have an Effect? 

An edge is simply defined as the boundary of the spatial area under analysis.  That is, the outer 
boundary of all the spatial units of analysis.  For example, if an analysis was being undertaken 
using Lithuania municipalities as the spatial units, the national border surrounding Lithuania is the 
edge.   
 
Though technically all spatial analysis, or any analysis for that matter, does have an edge, edges 
pose a problem in particular for point pattern analysis.  This is because, as discussed above, the 
distances between two events or a randomly selected point and an event are used to calculate 
descriptive statistics and used in inferential analysis.  As such, distance-based point pattern 
analysis methods suffer from the presence of edge effects.   
 
In some cases, the edge does not pose a problem in the analysis.  For example, a portion of the 
Lithuanian border is on the Baltic Sea.  Consequently, we would not expect there to be any events 
that are outside of the edge—there may be some people, and corresponding events, that live just 
of the coast of Lithuania, but these events can easily be placed on a land region close to the water 
for an analysis.   
 
The problems occur with edges when the study area is part of a larger geographical region that the 
underlying spatial process operates within.  Consequently, any events occurring outside of the 
study area but within the larger geographical region may interact with the events within the study 
area (Diggle 2003).  This is the edge effect.  Consider the example shown in Figure 9. 
 

 

Figure 9. The Presence of an Edge Effect 
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Figure 9 shows the study area, its boundary (edge), and some events outside of the study area 
that are related to the events inside of the study area.  Such a situation may occur if someone is 
able to obtain data for one municipality on the incidence of a disease, but not for any bordering 
municipalities.   
 
An excellent example of such a situation would be if there is an industrial plant located within one 
municipality (the study area) that creates pollution that travels through the atmosphere.  The 
pollution from this industrial plant is not thought to impact neighbouring municipalities because of 
distance, or neighbouring municipalities may not cooperate with the research project because of 
jurisdictional issues, for example.  Regardless, the events that are present outside of the study 
area really should be included in the analysis of the effects stemming from the pollution of the 
industrial plant. 

3.4.2. The Impact an Edge Can Have on an Analysis 
The impact that an edge may have on the analysis is a biased result.  This means that the results 
may not be truly representative of the study.  Rather, because important information was not used 
in the analysis, the results may be misleading. 
 
It should be mentioned that this situation is the case in all statistical analyses.  The relevant 
information is not always available, so important information is not included.  However, as with all 
statistical analyses, there are methods to deal with these shortcomings stemming from the lack of 
available data. 

3.4.3. Methods of Correcting for the Edge Effect 
There are a number of methods that allow the researcher to account for the presence of edge 
effects.  The most frequently used methods are: the adjustment method, toroidal wrapping, and the 
use of a buffer zone (sometimes called a guard area) (Diggle 2003). 
 
Of these three methods for accounting for the presence of edge effects, the most common method 
of dealing with this problem is to create a buffer zone.  A buffer zone is an area that is created a 
certain distance from the outer edge of the study area.  This is shown in Figure 10. 
 

 

Figure 10. Buffer Zone Correction for Edge Effects 

In the analysis of the point pattern, distances are not calculated for points within the buffer zone, 
but events in the buffer zone are allowed to be used for the calculations involving other events 
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(Bailey and Gatrell 1995).  Effectively, what this procedure does is allow the researcher to simulate 
having those points outside of the study area and then undertake the analysis without concern for 
imposing bias on the results.  As such, the use of the buffer method, as well as the adjustment 
method, eliminates the bias from the edge effects with the cost of increased variance from 
decreased data (Diggle 2003). 
 
Regarding the size of the buffer zone, there is no specific rule used in order to determine the 
distance of the buffer zone from the outside of the study area.  Rather, the process of creating a 
buffer zone for the analysis may be applied repeatedly as a sensitivity analysis.   
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3.5.  Density Estimation and Hot Spot Mapping 

3.5.1. The Concept of Density 
One of the most common (and popular) methods for visualizing point data as a continuous surface 
is kernel density estimation.  Simply put, the kernel density estimation method creates a relatively 
smooth surface from the point events in a data set that varies according to the density of those 
point events across the study area.  As such, this density can be viewed as an intensity of the 
phenomenon under study.   
 
One of the applications of kernel density estimation is in the identification of hot spots, usually in 
the case of some reported crime.  Rather than trying to discern patterns on a map that potentially 
has tens of thousands of events—in many cases there are so many crimes (think of personal theft 
or automotive theft) that the entire map is covered in point events—kernel density estimation shows 
where the areas with the most points, the “hottest”, are located.  This spatial statistical method has 
common availability as well as visual appeal.    

3.5.2. Kernel Density Estimation 

There are three basic steps in kernel density estimation.  Consider the study area in Figure 11: the 
entire study area is contained within the parallelogram; the dots within the parallelogram represent 
the locations within the study area that have experienced a particular event; and the entire study 
space, including those areas that have experienced the events, are points.  In other words, as 
described above, a point can represent any location within the study area and an event represents 
a location where something has occurred. 
 

 

Figure 11. Kernel Density Study Area 

The first step to calculate a kernel density for this study area is to superimpose a fine rectangular 
grid over the entire study are whether or not there are any points in all locations, shown in Figure 
12.  One of the good features of kernel density estimation is that the user is able to specify the grid 
cell size.  This is a good feature because the grid cell size will likely vary from application to 
application and having the user to specify the grid cell size allows the user to perform a sensitivity 
analysis.   
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A sensitivity analysis may be particularly important in many applications because there may be no 
consensus on the grid cell size, but a range in grid cell sizes that different people have used.  The 
user can then perform the kernel density estimation using a variety of grid cell sizes within that 
range in order to uncover any potential changes in the results.  Ratcliffe (1999) has also proposed 
a method for determining the grid cell size when no other method is available: draw a rectangle 
around the study area that is small as it can be without entering inside of the study area, measure 
the shorter of the sides of that rectangle (in metres), and then divide by one hundred and fifty. 
 
 

 

Figure 12. Kernel Density Grid 

The second step is to calculate a function (the intensity function) for each of the cells in the study 
area.  At this step, each grid cell is given a point location at its centre (the centroid) and a circle is 
drawn around that point with a specified radius.  The radius of this circle is referred to as the 
bandwidth of the kernel density estimation.  The more events that occur within that circle, the 
higher the density value for that particular grid.  Additionally, all events are not given the same 
weight in the calculation of the density: each event is “weighted” by its distance away from the 
centroid, such that points closer to the centroid receive a higher weight and contribute 
proportionately more to the calculation of that cell’s density value.  This is shown in Figure 13.   
 
The primary issue is to determine the appropriate radius, or bandwidth, and is the portion of the 
kernel density calculation that is most sensitive to changes.  As with the grid cell size, discussed 
above, the appropriate bandwidth should be set according to the particular application.  Other 
research should be consulted to determine the appropriate bandwidth, or the appropriate range to 
undertake a sensitivity analysis. 
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Figure 13. Kernel Density Calculation 

The third step is to map the output from the kernel density estimation.  Given that the estimated 
values represent a range of values, a graduated colour ramp is best for visualization: white or pink 
for low density and dark red for high density, for example. 
 
A nice feature of the kernel density estimation is that the values generated for each of the grid cells 
is in a meaningful unit for describing most spatial point distribution—the number of events per 
square kilometre, for example.  Consequently, the values in each grid cell can be compared in a 
meaningful way: grid cell 122 has a value of 100 and grid cell 123 has a value of 50, so grid cell 
122 is twice as dense as grid cell 123. 
 
Let’s consider a couple of simple, short examples.  First, there is the equation for a kernel density.  
This particular equation is for a quartic kernel: 
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where �  is the intensity value (kernel), �  is equal to 3.14, r is the radius (bandwidth), and di is the 
distance between the centroid and event i within the bandwidth.  Once the bandwidth is chosen, 
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, and let us 

also ignore the squared term on the outside of the brackets, again for simplicity.  Set r = 10.  Now 
let us consider two possible scenarios. 
 
First there will be four points within the bandwidth: two of them will be two units from the centroid 
and two will be three units from the centroid.  In the second scenario there will be two points within 
the bandwidth, both nine units from the centroid.  The calculations for both examples are below. 
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In the first example, the value of �  is shown to be 3.74 and in the second example the value of �  is 
shown to be 0.38—of course, the actual values of �  would be different if the complete formula was 
used. 
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The first example has a much higher value of �  for 2 reasons.  First, there are more events within 
the bandwidth, and second, the events that are within the bandwidth in example 1 are closer to the 
centroid.  Consequently, the value of �  depends on both of these factors, so it is possible for one 
grid cell value to be higher than another even if the latter grid cell has more events within its 
bandwidth.  To provide a trivial example, if there are no events within the bandwidth, � = 0. 

3.5.3. Limitations of Density Estimation 

There are two primary limitations with the usage of kernel density estimation: a methodological 
concern and an accurate representation of events concern. 
 
The methodological concern is probably the “worst” criticism of the use of kernel density estimates.  
There are two types of point data.  The first type of point data represents discrete events such as a 
criminal occurrence, a traffic accident, and a case of disease.  The second type of point data 
represents a measurement of a continuous surface such as temperature or pollution levels.  Given 
that the second type of point data actually represent a continuous surface, it makes sense to 
transform the points into a continuous surface for analysis—for budgetary reasons, all locations 
cannot be measured to calculate temperatures across a country, for example.   
 
The first type of point data, however, is not a continuous phenomenon.  Consequently, there are 
many people who state that you cannot meaningfully transform discrete point events into a 
continuous surface because the underlying data themselves are not continuous.  Those who map 
criminal occurrences are particularly guilty of turning discrete events into continuous surfaces. 
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However, if one considers the continuous surface to be a measure of risk, this criticism becomes 
less problematic.  Whether or not a crime occurs at one intersection or another two intersections 
away may simply be random, so the risk of criminal victimization may be equal at both 
intersections.  The difficulty arises when there is an intersection (and a small area around it), for 
example, that never has any crime but the kernel density estimation procedure provides that 
location with a risk of crime.  Consequently, as with any statistical analysis, caution must be used 
when interpreting kernel density results. 
 
The second limitation is one that is relatively easy to resolve.  The limitations arise because many 
researchers who calculate kernel density estimates use only the event data for that calculation.  
The resulting map will indeed show where the hotpots of that activity are, but those hotspots may 
be misleading. 
 

 

Figure 14. Single Kernel Density 

Figure 14 shows a kernel density map calculated using only the event data, which makes this a 
single kernel density—a single set of point data are used in the calculations.  Clearly there is a 
hotspot, high density, close to the centre of the peninsula at the top of this map—this is not a 
Lithuanian example.  However, one must ask the question: is there something special about this 
location or is it a hotspot simply because there is a large population at risk in this area? 
 
Crime rates, disease rates, traffic accident rates, etc. are calculated because if one wants to have 
an accurate measure of risk, one must consider the population at risk of crime, disease, and traffic 
accidents.  Municipalities that have larger populations do not necessarily have larger volumes of 
crime, disease, and traffic accidents.  What is more important to know is whether or not there is 
more crime, disease, or traffic accidents after controlling for the population at risk, usually the 
population of the area under study—traffic volume in the case of traffic accidents.  So in Figure 14, 
is there really a high volume of some activity or are there simply more people in that area? 
 
In order to address this limitation, there is a kernel density estimation technique called the dual 
kernel density.  This dual kernel density needs two sets of point data: the event data of interest, 
and the population at risk of encountering that event.  The difference in the resulting maps can be 
astounding.  This is shown when considering both Figures 14 and 15. 



Spatial anglysis and modeling 

© National Land Service under the Ministry of Agriculture, 2007 
106 

 

 

Figure 15. Dual Kernel Density 

Using a dual kernel density, Figure 15 shows that there is not nearly as much high density as in 
Figure 14.  The highest density is in the same general area on both maps, but clearly a different 
picture of the phenomenon has emerged.  Consequently, one of the first questions one should ask 
when shown any type of density map is: is this a single or dual kernel density map?  If the person 
responds with an answer of “single” or “I don’t know”, then the results of the map should be 
interpreted with caution because there has been no account for the population at risk. 
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3.6.  Local Spatial Statistics 

3.6.1. The Limitations of Global Spatial Statistics 

Thus far, we have investigated spatial statistics that are now classified as “global”.  Indeed, until 
twenty years ago all spatial statistics could be classified in this way—it has only been 
approximately twelve years for areal spatial analysis.  What the term global means is that one set 
of statistical results is generated from an entire set of data and this set of results is meant to depict 
the entire study area.  As such, this one set of statistical results is said to represent an average set 
of results for all spatial units in the analysis.  However, if the relationships being examined actually 
vary within the study area, then the global spatial statistics are actually of little value.  Though a bit 
more extreme, a global statistic that is of little value is the average temperature in Russia.  With 
Russia being such a large country, having one statistic to represent all of its regions provides us 
with little useful information.  Consider the following example. 
 
Suppose a Moran’s I statistic was calculated using Lithuanian municipalities for automotive theft.  
The result would be Moran’s I = 0.029.  This result shows a very small, and statistically 
insignificant, degree of positive spatial autocorrelation.  However, if you were to calculate a local 
version of Moran’s I, described in detail below, you would find that the local Moran’s I results range 
from -4.235 to 2.645, having an average of 0.134—each of the sixty municipalities in Lithuania has 
a local Moran’s I statistic.  Additionally, four of these local Moran’s I statistics are significantly 
different from zero, contrary to the global Moran’s I result.   
 
Because of this known variation within most study areas there has been a relatively recent 
movement within spatial statistics that focuses on the differences in statistical results across space, 
rather than simply assuming that these differences do not exist.  Indeed, this has been one of the 
criticisms of quantitative geography, that is searches for global generalities rather than considering 
the local.  As such this movement in spatial statistics, or spatial analysis more generally, has been 
coined as local analysis, local modelling, and local spatial statistics.   

3.6.2. The Utility of Local Spatial Statistics 

There are a number of factors that show the utility of local spatial statistics over and above the use 
of global spatial statistics—it should be noted, however, that local spatial statistics are best used in 
conjunction with global spatial statistics rather than simply replacing them.  From the example 
given above, local spatial statistics are multivalued, vary across space, and emphasize the 
differences across space within an entire study region.   
 
Of course this is a strong case for the use of local spatial statistics, but there are more reasons why 
they are fruitful to an analysis.  Local spatial statistics are mappable.    As stated above in the 
Lithuanian municipality example, each areal spatial unit has a local spatial statistic associated with 
it.  Consequently, this is simply yet another variable in the data set that can be mapped.  Because 
this variable can be mapped, it is considered to be GIS-friendly.  And lastly, local spatial statistics 
can be used to search for hotspots: think of two or more spatial units that have statistically 
significant positive local spatial autocorrelation. 
 
The first well-known development in local spatial analysis is in regard to spatial point patterns, the 
geographical analysis machine of Openshaw et al. (1987).  The geographical analysis machine, 
though extended by a number of researchers, is a computationally intense algorithm that we will 
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not cover in any detail here.  However, its general formulation is worthy of note because it is 
consistent across most local spatial statistical analyses. 
 
First, there is a method of defining sub-regions within the entire study area; second, there is a 
method of describing the spatial point pattern within each of these sub-regions; third, there is a 
methodology for identifying those spatial point patterns that are significantly different from the 
average; and fourth, there is a method of mapping the results.  Though there are, at times, 
substantial differences between the geographical analysis machine and more recent local spatial 
statistical methodologies, these characteristics are present, in some form, in all local spatial 
statistical methods. 

3.6.3. Local Moran’s I 

Anselin (1995) introduced a local variation of the global Moran’s I that he called local Moran’s I.  
More generally, Anselin (1995) described a class of local spatial statistics called local indicators of 
spatial association (LISA).  These local indicators of spatial association have a property that 
separate them from other local spatial statistical measures: a local indicator of spatial association 
must provide a measure of the extent to which there is a spatial clustering of similar values around 
each spatial unit of analysis and the sum of all the local indicators of spatial association must be 
proportional to its corresponding global indicator of spatial association—the global Moran’s I in this 
case.  That is to say that there must be some relationship between the local and global indicators 
of spatial association that can be defined, otherwise there should not be any similarity in the names 
of the local and global statistics because it would be misleading. 
 
The local Moran’s I is calculated as follows: 
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where all of the variables listed here are defined above in the section covering spatial 
autocorrelation.  It should be noted the high degree of similarity between this local version of 
Moran’s I and the global version of Moran’s I that allows this spatial statistical measure to be 
classified as a local indicator of spatial association.  Though this formula is complex, as with the 
global indicator of spatial association, the local Moran’s I is easily computed within the ArcGIS 
environment using ArcToolbox. 

3.6.4. Local Cluster Analysis 

Local cluster analysis, as the term indicates, searches for clusters of spatial entities at a local level.  
Unlike Topic 3, however, the examples provided in this Topic use areal spatial units to form 
clusters.  Specifically, it is a search for local clusters of significant local Moran’s I values. 
 
There are a number of steps to undertake in order to perform a local cluster analysis using the local 
Moran’s I statistic.  First, the local Moran’s I statistic needs to be calculated.  Using ArcGIS, this 
produces two new variable columns called LMiContig and LMzContig.  LMiContig is the local 
Moran’s I statistic value and LMzContig is the z-statistic associated with each LMi value—Contig is 
in reference to the use of a contiguity spatial weights matrix, discussed above. 
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The first variable, LMiContig, is shown in Figure 16.  The degrees of green (light to dark) represent 
increasing negative values of the local Moran’s I statistic and the degrees of red (light to dark) 
represent the increasing positive values of the local Moran’s I statistic for Lithuanian municipalities.  
The white municipalities are spatial units with local Moran’s I statistics that are close to zero.  As 
should be rather evident, there is a large degree of variation in the local Moran’s I statistics across 
Lithuanian municipalities with many of the local Moran’s I statistics being negative, unlike the 
statistically insignificant positive global spatial autocorrelation.  However, despite this geographical 
variation, it is also important to identify the significance of these local Moran’s I statistics as well as 
determine the nature of any local clusters. 
 

 

Figure 16. Local Moran©s I, Automotive Theft Rate per 10 000 Population 

The significance levels of the local Moran’s I statistics are shown in Figure 17 (light to dark 
increasing in significance), with only the areas that are solid black being statistically significant.  A 
very different picture of the spatial autocorrelation in Lithuanian municipalities should be emerging 
for anyone viewing both of these maps and knowing that the global spatial autocorrelation is 
statistically insignificant.  Though there is a high degree of variation in the local Moran’s I statistics, 
many of them are statistically insignificant, mirroring the global Moran’s I statistical result.  The next 
step is to select those Lithuanian municipalities that have statistically significant local Moran’s I 
statistics, determine the nature of those Lithuanian municipalities and visualize them. 
 



Spatial anglysis and modeling 

© National Land Service under the Ministry of Agriculture, 2007 
110 

 

 

Figure 17. Local Moran©s I, Statistical Signifiance (Z-score) 

The final map for the purposes of this example is shown in Figure 18.  This map represents the 
Lithuanian municipalities that have statistically significant local Moran’s I statistics at the 10 percent 
level of significance (absolute value of the z-score > 1.28), though in this particular case there is no 
difference when using the 10 percent level of significance and the 5 percent level of significance 
(absolute value of the z-score > 1.645).  Four Lithuanian municipalities have statistically significant 
local Moran’s I statistics. 
 
The categories represented are as follows: High – High (red), High – Low (pink), and Low – High 
(blue)—there is also the Low – Low classification that is not represented on this map.  
Municipalities with High – High and Low – Low categories have positive local spatial 
autocorrelation (similar local Moran’s I values), and municipalities with High – Low and Low – High 
categories have negative local spatial autocorrelation (not similar local Moran’s I values).  
 
The following is a description of each of the four possible categories: municipalities that are 
labelled as High – High have statistically significant positive local Moran’s I statistics, have a high 
automotive theft rate, and are surrounded by other municipalities that have high automotive theft 
rates; municipalities that are labelled as High – Low have statistically significant negative local 
Moran’s I statistics, have a high automotive theft rate, and are surrounded by other municipalities 
that have low automotive theft rates; municipalities that are labelled as Low – High have statistically 
significant negative local Moran’s I statistics, have a low automotive theft rate, and are surrounded 
by other municipalities that have high automotive theft rates; and lastly, municipalities that are 
labelled as Low – Low have statistically significant positive local Moran’s I statistics, have a low 
automotive theft rate, and are surrounded by other municipalities that have low automotive theft 
rates.   
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Figure 18. Significant Local Moran©s I, By Type of Cluster 

Though in this example there are only four of the sixty Lithuanian municipalities with statistically 
significant local Moran’s I values, the utility of using a local spatial statistical measure should be 
apparent.  When only considering the global measure of spatial autocorrelation, one would have 
thought that there was no clustering of automotive theft in Lithuanian municipalities.  However, 
using the local measure of spatial autocorrelation there is a curious pattern that emerges, one on 
either side of the country. 
 
The three municipalities that have high rates of automotive theft (Klaipeda town municipality and 
Palanga town municipality in the West and Kaunas town municipality in the East) are on border 
regions in Lithuania.  This finding may have significance towards any automotive theft crime 
prevention.  However, this may simply be a coincidence.  Also, despite being a neighbour to 
municipalities with high automotive theft rates, Kazlu municipality has a low automotive theft rate: 
what would a municipality close to a small cluster of municipalities with high rates of automotive 
theft have such a low automotive theft rate?  This question cannot be answered here, but these 
questions could not even have been asked if only global spatial autocorrelation was used in the 
analysis. 
 
 



Spatial anglysis and modeling 

© National Land Service under the Ministry of Agriculture, 2007 
112 

References 
 
1. Anselin, L. (1995) Local indicators of spatial association – LISA.  Geographical Analysis 27: 93 – 

115. 
 
2. Bailey, T.C. and A.C. Gatrell (1995) Interactive Spatial Data Analysis.  Harlow, England: 

Prentice Hall. 
 
3. Brantingham, P.L. and P.J. Brantingham (1995) Location quotients and crime hot spots in the 

city.  In C.R. Block, M. Dabdoub, S. Fregly (eds.) Crime Analysis through Computer Mapping.  
Washington, DC: Police Executive Research Forum, pp. 129 – 149. 

 
4. Brantingham, P.L. and P.J. Brantingham (1998) Mapping crime for analytic purposes: location 

quotients, counts and rates.  In D. Weisburd and T. McEwen (eds.) Crime Mapping and Crime 
Prevention.  Monsey, NY: Criminal Justice Press, pp. 263 – 288. 

 
5. Diggle, P.J. (2003) Statistical Analysis of Spatial Point Patterns, Second Edition.  London: 

Arnold Publishers. 
 
6. Isard, W., I.J. Azis, M.P. Drennan, R.E. Miller, S. Saltzman, and E. Thorbecke (1998) Methods 

of Interregional and Regional Analysis.  Brookfield, VT: Ashgate Publishing Limited. 
 
7. Miller, M.M., L.J. Gibson, and N.G. Wright (1991) Location quotient: a basic tool for economic 

development studies.  Economic Development Review 9: 65 – 68. 
 
8. Openshaw, S. (1984) The Modifiable Areal Unit Problem. CATMOG (Concepts and 
9. Techniques in Modern Geography) 38. Norwich: Geo Books. 
 
10. Openshaw, S., M. Charlton, C. Wymer, and A. Craft (1987) Developing a mark 1 

geographical analysis machine for the automated analysis of point data.  International Journal of 
Geographical Information Systems 1: 335 – 358. 

 
11. Ratcliffe, J. (1999) Hotspot Detective for MapInfo Helpfile Version 1.0. 
12. http://jratcliffe.net/ware/ index.htm 
 
13. Robinson, W.S. (1950) Ecological correlations and the behaviour of individuals.  American 

Sociological Review 15: 351 – 357. 
 
14. Tobler, W. R. (1970) A computer model simulation of urban growth in the Detroit region. 

Economic Geography 46: 234 – 240. 
 
 
 



Spatial anglysis and modeling 

© National Land Service under the Ministry of Agriculture, 2007 
113 

Additional Resources 
 
Classical Correlation 
 
The Statistics Homepage: 
 
http://www.statsoft.com/textbook/stathome.html 
 
 
Introductory Statistics: 
 
http://www.psychstat.missouristate.edu/sbk00.htm 
 
 
HyperStat Online: 
 
http://davidmlane.com/hyperstat/ 
 
 
Modifiable Areal Unit Problem and the Ecological Fallacy 
 
Jerry Ratcliffe’s Home Page (MAUP): 
 
http://www.jratcliffe.net/research/maup.htm 
 
Jerry Ratcliffe’s Home Page (Ecological Fallacy): 
 
http://www.jratcliffe.net/research/ecolfallacy.htm 
 
 
Density Estimation and Hot Spot Mapping 
 
Mapping Crime: Understanding Hot Spots (U.S. National Institute of Justice): 
 
http://www.ojp.usdoj.gov/nij/maps/ncj209393.html 
 
CrimeStat Manual (Chapter 8): 
 
http://www.icpsr.umich.edu/CRIMESTAT/files/CrimeStatChapter.8.pdf 
 
or look in the Table of Contents at: 
 
http://www.icpsr.umich.edu/CRIMESTAT/download.html 
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4  Geostatistics  
 
Geostatistics is one of most challenging aspects of spatial analysis. It involves the study of the 
interpolation, smoothing, estimation and prediction of surface’s values based on discrete 
measurements. This module provides an introduction to geo-statistics, including elements of 
exploratory spatial data analysis, structural analysis including calculation and modeling of the 
surface properties of nearby locations, and surface prediction and the assessment of results. 
Methods discussed include Inverse Distance Weighting, trend analysis with global and local 
polynomials, splines interpolation and techniques of kriging predictions. The notion of spatial 
dependency and auto-correlation is also analyzed. Categorization of geostatistical methods, 
recommendations for applications of these methods, and models of results validations are also 
discussed.  
 
Module Outline 
 

Topic 1: Introduction to Geostatistics:  
- The First Law of Geography  
- Tasks: Interpolation, Smoothing and Prediction 

Topic 2: Classification of Geostatistics Methods: Global/Local, Exact/Non-Exact, 
Deterministic/Probabilistic 

Topic 3: Interpolation and Smoothing Methods:  
- IDW 
- Global Polynomials 
- Local Polynomials 
- Splines 

Topic 4: Kriging Prediction 
Topic 5: Model Validation 
Topic 6: Conclusion: Comparison of Geostatistical Methods 
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4.1.  Introduction to Geostatistics 

4.1.1. Motivation  
A common research task is the investigation of the spatial structures of natural or social 
phenomena, using point observation and quantitative analysis. For example, acid precipitation, a 
major cause for forest decline, is usually sampled in discrete stations. The term acid precipitation 
refers to acid pollution of atmospheric precipitation (rain or snow). The acidity of substances 
dissolved in water is measured in terms of pH (defined as the negative logarithm of the 
concentration of hydrogen ions). According to this measurement scale, solutions with pHs less than 
7 are described as being acidic, while a pH greater than 7.0 is considered alkaline. Precipitation 
normally has a pH from 5.0 to 5.6 because of natural atmospheric reactions involving carbon 
dioxide. For comparison, distilled water, pure of any other substances, would have a pH of 7.0. 
Precipitation is considered acidic when its pH falls below 5.6, this being 25 times more acidic than 
pure distilled water. 
 
Precipitation forecasts may be based on the observations of meteorological stations with limited 
spatial distribution. Limitations of such an approach include the high cost of fieldwork and the 
inaccessibility of some regions. For example in Lithuania, a meteorological network of 16 stations 
was set up to monitor precipitations and other climate parameters. Annual precipitation data for 
2005 ranges from 915 �  Pr �  396 mm (see Table below). 
 
Table below shows the precipitation levels in year 2005, and the coordinates of the observation 
stations.  
 

VARDAS ID mm X Y 
Bir� ai 1 584 546484 6229692 
Telšiai 13 620 389573 6206379 
Utena 15 701 601070 6152592 
Raseiniai 10 484 443915 6138743 
Šilut�  12 835 339702 6137606 
Dotnuva 2 432 492560 6136744 
Nida(Neringa) 8 915 310049 6134547 
Ukmerg�  14 655 549330 6123740 
Kybartai 4 649 420364 6056681 
Var� na 16 861 535976 6012783 
Lazdijai 7 722 468284 6010907 
Klaip� da 5 752 323400 6174934 
Šiauliai 11 396 456608 6200104 
Panev� � ys 9 527 522840 6177229 
Kaunas 3 641 499666 6085879 
Laukuva 6 642 388910 6166667 
Vilnius 17 783 571223 6055189 
 
It may be asked “What is the best way to visualize the spatial variation in the data?” One answer 
would be “through geographic mapping”. Mapping here can include intermediate points, with no 
observations but predicted values. These locations, with and without data, can be visualized in a 
grid covering the study area. 
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Figure 1 : The geocoded Lithuanian meteorological station network based on the table data and an 
interpolated surface 

In the prediction of the intermediate locations, interpolation methods, such as kriging can be used. 
For accuracy, optimal spatial prediction and respective principles can be applied. For example, 
weighted averages of available observations may be used, with greater weights corresponding to 
proximity to the prediction point.  
 

 

Figure 2 : Observations and unknown locations for interpolation 

4.1.2. What is Geostatistics? 
Geostatistics is a branch of applied statistics. The principles of Geostatistics were developed in by 
G. Matheron (1963, France), L.S. Gandin (1963, Soviet Union) and A.S. Goldberger (1962, USA)). 
The original purpose of geostatistics centered on estimating changes in ore grade within a mine. 
However, the principles have been applied to a variety of areas in geology and other scientific 
disciplines, including weather forecasting. 
 
A unique aspect of geostatistics is the use of regionalized variables, which are variables that fall 
between random variables and completely deterministic variables. Regionalized variables describe 
phenomena with geographical distribution (e.g. elevation of ground surface or temperature). For 
regional data, the locations are known and fixed. 
 
Although there may be spatial continuity in the observed phenomena, it is not always possible to 
sample every location. Therefore, unknown values must be estimated from the size, shape, 
orientation, and spatial arrangement of the sampled locations. If the spatial pattern changes, the 
estimated values also change. For geostatistical data, the sampling and estimating of 
regionalized variables create a pattern, which may be mapped as a raster grid or contour.  
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Therefore, geostatistics is about the analysis of spatially referenced phenomenon that was 
observed via discrete measurements. Geostatistics uses spatial coordinates to formulate 
continuous model of the analyzed phenomenon based on interpolation, smoothing, estimation 
and/or prediction techniques. These techniques use information on the spatial coordinates and 
their distribution of the empiric data. 
 
Geo-statistical data may help to answer questions such as:  

�  Where? E.g., where are water quality measurement stations in Lithuania located? 
�  How many? E.g., what are the unemployment rates per municipality in Lithuania? 
�  How much? E.g., what are values of soil pH in Lithuania in particular locations? 

4.1.3. The First Law of Geography  
What is special about spatial data?  

�  The location of a sample is an intrinsic part of its definition. Spatial data often represents 
observations from one random variable. Examples include the observations of the mortality 
rate, soil pH, or temperature in Lithuania. 

 
�  Thus in correlation analysis, the linear relationship between two random variables is 

determined (e.g. between soil pH and crop production; temperature and elevation, etc.). 
Geostatistics is primarily concerned with the auto-correlation function, or the correlation 
between observations separated by a measured distances and directions. Therefore, the 
values are: (1) the measurement of a variable at a random point; and (2) the spatial pattern 
of distance and directions between the measured variables at each point. Dependence 
between these two sets of values may be measured with a variogram (or semi-variogram). 
This tool will be discussed later in this module. 

 
�  All data sets from a given area are implicitly related by their coordinates and are used to 

model spatial structure. As there may be a spatial structure to the data, values at sample 
points cannot be assumed to be independent. This contrasts with classical statistics, which 
assumes independence, at least within the sampling strata. These contrary assumptions 
(classical statistics and geostatistics) have major implications for sampling design and 
statistical inference. 

 
Spatial data are characterized by spatial dependence or auto-correlation. Spatial dependencies 
can be described by “the first law of geography” that states “everything is related to everything else, 
but near things are more related than distant things” (Tobler, 1970). Therefore, with increasing 
distance, the characteristics of two locations become less similar and/or related.  
 
The key question of geostatistics is “How can we measure spatial dependence?” Important 
measurement tools are the semivariogram and auto-covariance functions. The use of these tools 
will be discussed later. The variogram is an effective tool for predicting the value of non-measured 
points, using distance and direction with measured points, and the screening effect of clusters of 
such information.  
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Figure 3 : Geostatistical predictors are weighted averages of available observations. Observations closer (i.e. 
stronger correlated – not necessary nearer) to the prediction point should be given more weight in the 
predictor. Screening effect: clusters of observations are down weighted. 

4.1.4. Tasks: Interpolation, Smoothing, Estimation and Prediction 
This module considers four of the techniques used in geostatistics to create a continuous surface 
from sample points across a landscape. These techniques are often called interpolation, but strictly 
speaking, that is only for points that are geographically inside the sample set (otherwise it is 
extrapolation). In context of geostatistics, these techniques can be considered as interpolator, 
smoother, estimator or predictor, depending on the particular mathematical or/and statistical 
technique. Interpolation methods can be adopted to allow extrapolation. 
 

1. Inverse Distance Weighting (IDW) is a deterministic, direct interpolator. 
 

 

Figure 4 : Smoothing and direct Interpolation 

2. Trend surface estimation is stochastic smoother based on global or local polynomials. 
Trend surface analysis estimates a linear trend, i.e. � (si) that can be the deterministic 
component of the stochastic process.  

 
3. Splines (piecewise polynomials) are deterministic smoother and based on local or global 

neighborhoods. 
 

4. Kriging is a stochastic predictor and can work as smoother or direct interpolator depending 
on variogram or data. Data z(si) are observations from random variables Z(si) at locations si 

in a study area D that form a stochastic process {Z(si) : si �  D, i = 1,2,…}. This process is 
composed of at least two components Z(si) = � (si) + � (si) “trend plus residual” or three 
components Z(si) =[ � (si) + � (si) ] + � (si) “signal plus noise”, where: 

� (si) = deterministic trend, 
� (si) = stochastic, correlated residual, 
� (si) = random noise, uncorrelated. 
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4.2. Classification of Geostatistics Methods 
 
Geostatistical techniques or methods can be categorized based on the three criteria presented in 
Table 2.  
 
Table 2.  
Global method  
 
 
 
 
 
 
 
or 
 

Global method uses every known or sample point available to estimate an 

unknown value.  
Local method  
 

Local method uses a sample of known points to estimate an unknown value. 

Nearest N point is found and used for computation.  
Exact  
 
 
or 
 

No. Exact interpolation predicts a value at the 
point location that is the same as its known value. In 
other words, exact interpolation generates a surface 
that passes through the control points. 

 
None exact 
 

 
 
 
 
 
 
Is there a difference at 
the sample locations? Yes. Inexact interpolation or approximate 

interpolation predicts a value at the point location 

that differs from its known value.  
Deterministic  
 
 
 
or 
 

Deterministic interpolators make predictions from mathematical formulas that 
form weighted averages of nearby known values. A deterministic interpolation 
method provides no assessment of errors with predicted values. Different 
methods use different ways to form the weighted averages. This group 
includes Inverse Distance Weighted, global and local polynomials, and radial 
basis functions or splines. 

Probabilistic Stochastic interpolations use weighted averages as well, but also probability 
models to make predictions. Stochastic interpolation methods offer 
assessment of prediction errors with estimated variances. This group includes 
kriging and all of its different sub-methods.  

 
The methods discussed in this module can be classified as the following: 
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Global Local 

Deterministic Stochastic Deterministic Stochastic 

Trend Surface 
(inexact).  

Regression 
(inexact) 

Inverse Distance Weighted (exact) 
Splines (exact) 

Kriging (exact) 
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4.3.  Interpolation, Estimation and Smoothing Methods  

4.3.1. Inverse Distance Weighted (IDW) Interpolation 
As was stated above, an interpolation is the process of estimating unknown values that fall 
between known values. These points with known values are called known points, control points, 
sampled points, or observations. The values may describe any quantitative geographic 
phenomenon. With spatial interpolation, the goal is to create a surface that models the sampled 
phenomenon in the best possible way.  
 
Interpolation only works where values are spatially dependant, or spatially auto-correlated, that is 
where nearby location tending to have similar Z values. Examples of spatially auto-correlated 
features are elevation, property value, crime levels, and precipitation. Non-auto-correlated example 
is zeppelins consumed per household. Where values across a landscape are geographically 
independent, interpolation does not work because value of (x,y) cannot be used to predict value of 
(x+1, y+1).  
 

  

Figure 5 : One and two-dimensional interpolation: unknown value is interpolated based on values and 
distances to neighboring control points. 

Inverse Distance Weighted method follows the principle of the First Law of Geography. IDW 
determines cell values using a linearly weighted combination of points. The technique estimates 
the Z value at an unknown point by giving increased weighting to nearer points, this creating an 
inverse relation between weighting and distance. This can be described mathematically by 
Shepard�s formula of IDW below (Shepard, 1968):  
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jz  is the estimated value at (xj, yj),  

iz is a neighboring data value at (xi, yi),  

ijd  is the distance between (xi, yi) and (xj, yj),  

p is the power, 
i � �[1, n], n is the number of data points in the neighborhood of jz . 
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IDW linear interpolation case (power is p = 1), known values at z1 and z2, and correspondent 
distances to point A are d1A and d2A. Unknown value in point A will be calculated as: 
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IDW Features: IDW can provide a good preliminary description of an interpolated surface. There 
are no assumptions required of the data, but there is no assessment of prediction errors. IDW 
works best for dense, evenly spaced sample points. It does not consider trends in the data and 
cannot make estimates above the maximum or below the minimum sample values. 
 

 

Figure 6: The IDW resulting surface will pass through the sample points, where the maximum and minimum 
values in the interpolated surface can only occur at known points 

The IDW model parameters: The characteristics of the interpolated surface in IDW interpolation 
can be controlled by the following parameters: 

�  By value of the power function 
�  By the neighborhood search strategy that is limiting the number of input points that can be 

used in calculating the value of each interpolated point. Limit of control points can be 
defined by: 

o A number of closest sample points used 
o A search radius used for search neighborhood 
o A shape of search neighborhood 
o A combination of above strategies 

 
The Power Function: Depending on the site conditions, the distance may be weighted in different 
ways. If p = 1, this is a simple linear interpolation between points. In many cases, it was found that 
p = 2 produce better results. In this case, close points are heavily weighted, and more distant 

points are lightly weighted (points are weighted by 1/ 2
ijd ). At other sites, p has been set to other 

powers and yielded reasonable results. By changing the power, one can adjust the relative 
influence of the sample points. Increased power means that the output values become more 
localized and less averaged. Lowering the power that sample point values have provides a more 
averaged output, because sample points farther away become more and more influential until all of 
the sample points have the same influence. 
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Figure 7 : Distance weighting functions  

The Neighborhood Search Strategy: It is common practice to specify a search neighborhood to 
limit the number of measured values that are used to calculate the value of each interpolated point. 
The number of nearest neighbor points can control the sample size. In such a case, only N closest 
control points will be used for interpolation in unknown location. 
 
A search radius, with the shape of the neighborhood defining the search boundaries, defines the 
sample size. Some or all of the samples that fall within a radius to calculate the unknown point 
value can be used. 
 
Other parameters can be established, placing further restrictions on the selection of locations within 
the neighborhood. There can be a fixed search radius, which will use only the samples contained 
within it, regardless of number. In such a case, the distance of the radius of the circle used to 
search for points around each interpolated location and a minimum/maximum number of points that 
must be found can be specified. 
 

 

Figure 8 : A search radius strategy - only the maximum of 15 closest points that are within the searching 
radius are used for interpolation  

A search radius also can be variable. A variable search radius will expand until the specified 
sample size is found. One can specify the number of points to search for when calculating a value 
for each interpolated cell and a maximum distance for the search radius. 
 
The shape and structure of search radius also can be modified. Spatial dependencies (auto-
correlation) may depend only on the distance between two locations, termed isotropy. If there are 
no directional influences in the data (isotropy), then a neighborhood can be a circle.  
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However, it is possible that the same autocorrelation value may occur at different distances when 
considering different directions. In this case, there is greater variation in some directions than in 
other directions. This directional influence can be seen in the semi-variogram and is called 
anisotropy. If there is directional influence in data (anisotropy), then a neighborhood can be an 
ellipse with the major axis running in the direction of the change. If the neighborhood is sectored, 
then the constraints can be applied to each sector.  
 

   

Figure 9 : Isotropy, anisotropy and structural anisotropy 

It is important to explore for anisotropy and consider it within the interpolation model as a 
parameter (e.g. directional shape of search neighborhood). Variogram anisotropy will be discussed 
in more detail later. 
 
Other restrictions on the search neighborhood are physical barriers, such as mountains ridges, 
which may prevent the interpolator from using samples points on one side of it. Modifications of 
IDW method can include barriers in the analysis. A barrier can be a polyline dataset used as a 
break that limits the search for input sample points.  
 
IDW Summary: 

�  IDW is most commonly used techniques for interpolation. 
�  Inverse Distance Weighted method is: 

o geostatistical methods; 
o exact (in classical form); 
o local; 
o deterministic. 

�  There are different modifications of Shepard�s IDW method, none being perfect for any 
application. Although methods differ in weighting (for example the following functions could 

be used ²;;
²1

1 cdcd ee
cd

��

�
, where c is a constant) and number of observations used, all IDW 

modifications use location and value at sampling locations to interpolate the variable of 
interest at unmeasured locations. Each method produces different results even with the 
same data. 

�  IDW accuracy is often judged by the root mean square (RMS) error for differences between 
the measured (or/and control points) and interpolated values. 

4.3.2. Global Polynomials 
Trend surface analysis uses global surface-fitting procedures. A surface can be approximated by a 
global polynomial expansion of the geographic coordinates of the control points, and the 
coefficients of the polynomial function are found by the method of least squares adjustment, 
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insuring that the sum of the squared deviations from the trend surface is a minimum. An estimated 
trend, i.e. � (si), or y)Z(x, is considered as the deterministic component of the stochastic process.  
 

  =  +  

Figure 10 : Each original observation is considered to be the sum of a deterministic polynomial function of the 
geographic coordinates plus a random stochastic residual. 

The global polynomial for the trend analysis is a linear function that has the form: 
 

...YaXYaXaYaXaay)Z(x, 2
34

2
3210 ������  

 
Where y)Z(x,  is the data value at the described location, the a�s are coefficients, and X and 
Y are combinations of geographic location. Polynomial trend-surface analysis is basically a 
linear regression technique, but it is applied to two- and three-dimensions instead of just 
fitting a line. 
 
Any desired degree of the polynomial can be chosen. Practically, for trend analysis, low 
degrees are used (first, second and third orders). A flat surface describes by 0ay)Z(x, � . A 

linear plane, which is  first-order polynomial is YaXaay)Z(x, 210 ��� . Allowing for one 

band is a second-order quadratic polynomial is 
2

34
2

3210 YaXYaXaYaXaay)Z(x, ������  and so forth. The unknown a�s coefficients 

are found by solving a set of simultaneous linear equations which include the sums of powers 
and cross products of the X, Y, and Z values. 
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Figure 11 : Low order trend surfaces 

The optimum trend, or linear function, must minimize the squared deviations from the trend. The 
matrix description of solution is: 
 

BaZ ��  , where Z is a linear matrix of known values, a is a linear matrix of known a’s coefficients, 
B  is quadratic matrix derived from values of X and Y of known geographic locations. The 

optimization solution will be ZBa -1 �� , where -1B  is inversed matrix of B . The example of the 
solution for computing first-order (linear) trend surface YaXaay)Z(x, 210 ���  with least square 
method is below. 
 
The sample data is presented in the figure and table. 
 

 

Figure 12 : Sample with known locations for interpolated surface 

This surface can be represented as the following system of linear equitation: 
 

210 a76a69a820.02 ���  

210 a64a59a910.10 ���  

210 a52a75a380.10 ���  

210 a73a86a600.14 ���  

210 a53a88a560.01 ���  

Point X Y Z Value 
1 69 76 20.820 
2 59 64 10.910 
3 75 52 10.380 
4 86 73 14.600 
5 88 53 10.560 
0 69 67 ? 
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To solve for these three a’s unknowns for nth number of data points, the following three normal 
equations are available:  
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Solving these equations simultaneously will yield a "best-fit", defined by least-squares 
regression, for a two-dimensional, first-order (a plane) trend surface. This can be rewritten in 
matrix format: 
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With initial data values: 
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After the adjustments: 
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The linear function is defined as 0.347Y0.020X -10.094y)Z(x, ��� . Once the coefficients have 
been estimated, the polynomial function can be evaluated at any point within the study area (e.g. 
for 535.14 670.347690.020 -10.094Z(69,67) ������ ). It is a simple matter to create a grid matrix of 
values by substituting the coordinates of the grid nodes into the polynomial and calculating an 
estimate of the surface for each node. Because of the least squares fitting procedure, no other 
polynomial equation of the same degree can provide a better approximation of the data. 
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The global polynomial surface changes gradually and captures coarse-scale patterns in the data. 
Global polynomial interpolation creates a slowly varying surface using low-order polynomials that 
possibly describe some physical process (e.g., pollution and wind direction). The calculated 
surfaces are highly susceptible to outliers (extremely high and low values, especially at the edges).  
 
Global polynomial estimation can be used for fitting a surface to the sample points when the 
surface varies slowly over area of interest. It is also applied to examining and/or removing the 
effects of long-range or global trends. The trend polynomial analysis can help identify global trends 
in the input dataset. Global polynomial approximation also can be use for regression analysis 
between two or more variable. 
 
 
Global polynomial Summary: 

�  Trend-surface analysis is a mathematical method used to separate "regional" from "local" 
fluctuations 

�  Global polynomial is a quick deterministic interpolator that is an inexact smoother.  
�  There are very few decisions to make regarding model parameters (only polynomial order).  
�  There is no assessment of prediction errors.  
�  Locations at the edge of the data can have a large effect on the surface.  
�  There are no assumptions required of the data.  

4.3.3. Local Polynomials 
Local polynomial interpolation is similar to global polynomial interpolation, except that it uses data 
within localized “windows” rather than complete datasets. It fits local trends within a “window” and it 
uses weights. The window can be moved around, and the surface value )y,(x ii0� at the center of 
the window is estimated at each point. Weighted least squares can be represented as below: 
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Where )y,(x ii0� is the value of the polynomial, i0d  is the distance between the point and the center 
of the window and a is a parameter that can be used to control how fast weights decay with 
distance.  
 
Local polynomial interpolation fits the specified order (e.g., zero, first, second, and third) polynomial 
using all points only within the defined neighborhood. The neighborhoods overlap, and the value 
used for each prediction is the value of the fitted polynomial at the center of the neighborhood. A 
first-order polynomial looks like as i2i10ii0 yx)y,(x ###� ��� , for second-order polynomial is 

ii5
2
i4

2
i3i2i10ii0 yxyxyx)y,(x ######� ������ , and so on. The minimization occurs for the 

parameters { j# }.  
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Figure 13 : Local polynomial interpolation fits many polynomials, each within specified overlapping 
neighborhoods. Thus, local polynomial interpolation produces surfaces that account for more local variation. 

Global polynomial interpolation is good for creating smooth surfaces and for identifying long-range 
trends in the dataset. However, in the earth sciences the variable of interest usually has short-
range variation and a long-range trend. When the dataset exhibits short-range variation, local 
polynomial interpolation maps can capture the short-range variation.  
 
Local polynomial interpolation is sensitive to the neighborhood distance. An operator can 
interactively choose this distance. As with IDW, it is possible to define a model that accounts for 
anisotropy by choosing an appropriate shape of the neighborhood search.  
 
Local Polynomial Summary: 

�  Local polynomial is a quick deterministic interpolator that is smooth and inexact.  
�  There are more parameter decisions – the polynomial order, size and shape of 

neighborhood and overlapping.  
�  There is no assessment of prediction errors.  
�  The method provides prediction surfaces that are comparable to kriging with measurement 

errors.  
�  There are no assumptions required of the data.  

4.3.4. Splines or Radial Basis Functions (RBF) 

Spline methods are a series of exact interpolation techniques that fits the surface through each 
measured sample value. There are few different spline functions 
(http://en.wikipedia.org/wiki/Spline_(mathematics)). Each spline function has a different shape and 
results in a different interpolation surface. Spline is conceptually similar to fitting a rubber 
membrane through the measured sample values while minimizing the total curvature of the 
surface. Spline methods are a form of artificial neural networks. 
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Figure 14 : Interpolation with a spline function 

Splines are used for calculating smooth surfaces from a large number of data points. The functions 
produce good results for gently varying surfaces such as elevation. The techniques are 
inappropriate when there are abrupt changes in the surface values within a short horizontal 
distance. 
 
Splines Summary: 

�  Radial basis functions are deterministic interpolators that are exact.  
�  There are more parameter decisions than IDW; therefore, it is more flexible than IDW. 
�  There is no assessment of prediction errors. Radial basis functions do not allow 

investigating the autocorrelation of the data.  
�  The method provides prediction surfaces that are comparable to the exact form of kriging. 
�  Radial basis functions make no assumptions about the data.  
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4.4.  Kriging Prediction 
 
The South African engineer D. G. Krige was the first to formalize a method that uses a 
mathematical model of the semivariogram for estimating a surface at grid nodes. The kriging 
method, named after its founder, predicts the best linear unbiased estimates of a surface at 
specified locations, based on the assumptions that the surface is stationary and the correct form of 
the semivariogram has been chosen. The kriging procedures incorporate measures of error and 
uncertainty in determining estimates. The calculation of unknown values is similar to IDW and 
based on weights assigned to known values. However, these weights are only optimal weights and 
the semivariogram is used for calculation weights. Semivariogram weights depend on the known 
sample distribution – distance and direction. 
 
Observed values are only one of many possible realizations of a random “stochastic” process. At 
each point s

�
, an observed value Z  is one possibility of a random variable )z(s

�
. There is only one 

value that is sampled and it is only one realization of a process that can produce different values. 
Each point has its own random process, with the same form. However, there may be spatial 
dependence among points. In this case, points are not independent. As a whole, they make up a 
stochastic process over the whole field R (i.e. the observed values are assumed to result from 
some random process but one that respects certain restrictions, in particular spatial dependence). 
The set of observed values R} ),Z({Z �$� ss

��
 is called a regionalized variable. This variable is 

doubly infinite by 1) number of points and 2) possible values at each point. 
 
Regionalized variable theory uses a related property called the semivariance to express the 
degree of relationship (or autocorrelation) between points on a surface. The semivariance is simply 
half of the variance in the values between each point pair that is separated by a known distance. 
The variogram is a representation which plots semivariances against its separated distance. This 
type of representation is discussed in detail below. 
 
The idea of stationarity is used to obtain the necessary replication. Stationarity is an assumption 
that is often reasonable for spatial data. There are two types of stationarity. One is called the first-
order or mean stationarity. In geostatistics, it is assumed that the mean is constant between 
samples and is independent of location.  
 
The second type of stationarity is called intrinsic stationarity for semivariograms and second-
order stationarity for covariance (http://en.wikipedia.org/wiki/Covariance). The intrinsic stationarity 
for semivariograms is based on the assumption that the variance of the value’s difference is the 
same between any two points that are the same distance and direction apart no matter which two 
points you choose. Second-order stationarity is the assumption that the spatial auto-covariance is 
the same between any two points that are at the same distance and direction apart no matter 
which two points you choose. The auto-covariance is dependent on the distance between any two 
values and not on their locations.  
 
However, in reality, first-order stationarity is often not verisimilar. The observed mean value is often 
different in several regions or has an obvious trend. Second-order stationarity is also often not 
plausible, thus, it is observed that covariance often increases without bound as the area increases. 
Solutions can be to use the differences between values, not the values themselves, and in a 
“small” region. The differences between values are the same over the whole area. In addition, if the 
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trend is subtracted, the residuals may comply with first-order stationary. These and other solutions 
(e.g. to use empirical variogram mean differences), as you will see below, are used for kriging 
prediction. 

4.4.1. Variography 

Each pair of observation points has a variance. The variance is the difference between two 
variables at two locations, raised to the second power. The semi-variance is variance divided by 
two. The semivariance is defined as: 
 

% &2jiji )Z(-)Z(
2
1

),( ssss
����

�' , 

 
Where ),( ji ss

��
' - semivariance and )Z( is

�
and )Z( js

�
 are values in two locations is

�
 and js

�
, which is 

separated by a known distance. The formula calculates half the difference squared between the 
values of the paired locations. Semivariances can be used as a measure of spatial dependences or 
autocorrelation.  
 
The semivariances can be summarized in a variogram. A variogram is obtained from the data. The 
variogram is a point “cloud” that plots the variance between two values of the same variable at two 
locations for 2/)1( �nn  points, where n is the number of observed points. The semivariances are 
plotted against distance in a variogram “cloud”. Along the ordinate x-axis, variogram plots the 
distance separating two locations; along the abscissa y-axis, variogram plots the semivariance that 
is used to quantify autocorrelation.  
 
The semivariance generally increases with distance and variograms are described by nugget, sill, 
and range parameters. Sill is maximum semivariance or the height that the semivariogram 
reaches, and represents variability in the absence of spatial dependence. It is often composed of 
two parts: a discontinuity at the origin, called the nugget effect, and the partial sill, which added 
produce the sill. Nugget is semi-variance as the separation approaches zero and represents 
variability at a point that cannot be explained by spatial structure. The nugget can be divided into 
measurement error and micro-scale variation and since either component can be zero, the nugget 
effect can be comprised wholly of one or the other. Range is separation between point-pairs at 
which the sill is reached or distance at which there is no evidence of spatial dependence.  
 
As )Z( is

�
 and )Z( js

�
get farther apart, they become less similar, and so the difference in their values, 

)Z(-)Z( ji ss
��

, will become larger. The anatomy of a typical semivariogram is represented in the 

following figure:  
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Figure 15 : The anatomy of a typical semivariogram and the semivariogram view in ArcGIS Geostatistical 
Analyst 

There are 2/)1( �nn  point pairs that are used to calculate and build the variogram. These involve 
large numbers and can become unmanageable to plot. For example, with 200 points, there are 
19,900-point pairs. To reduce the number of points in the empirical semivariogram, the pairs of 
locations are grouped based on their distance from one another into lag bins or by separations h

�
. 

For example, compute the average semivariance for all pairs of points that are greater than 100 
meters but less than 200 meters apart. This is repeated for all samples that are h distance apart 
and the average squared difference obtained. Therefore, the empirical semivariogram is a graph of 
the averaged semivariogram values on the y-axis, and h

�
distance (or lag) on the x-axis. 

 

 

Figure 16 : The empirical semivariogram view in ArcGIS Geostatistical Analyst. For each bin, only the average 
distance and semivariance for all the pairs in that bin are plotted as a single point on the empirical 
semivariogram cloud graph. 

Note that binning is the intrinsic stationarity assumption that allows replication. Mean values are 
replaced with mean differences, which are the same over the whole field, at least within some 
‘small’ lag separation h

�
. Thus, it uses “averaging” in the semivariogram formula above and the 

empirical semivariogram can be estimated for distances that are multiple of h
�

as: 
 

% &�
�

�
)(

1k

2
ji )Z(-)Z(

)(2

1
)(

hm
ss

hm
h

�
��

�
�

' - the semivariance is equal to the average of the squared 

differences between pairs of points within a bin spaced at distance h
�

. 
 
Where,h

�
 is regularly spaced points distance (separation or lag distance); )Z( is

�
and )Z( js

�
 are 

values in two locations is
�

 and js
�

; )(hm
�

 is the number of point pairs separated by vector h
�

 or 
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number of points within a bin. In practice, there have to be enough known points in order to define 
the set of vectors in each “bin”. 
 
Bins are commonly formed by dividing the sample area into a grid of cells or sectors that are used 
to calculate the empirical semivariogram. The size of the cell is called lag size and the number of 
cells is called number of lags. Narrow intervals mean more resolution, but fewer point pairs for 
each sample. 
 

   

Figure 17 : A measure of the similarity between a variable’s values (the co-variance between the two values) 
for distance h apart is obtained. Variograms with the respective 10000 and 50000 meters lags (bin sizes) are 
produced different outputs (in the right-hand side of the figure)  
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Consider the following example for binning the empirical semivariogram: 
 
Locations 

),( ii yxs
�

  

Value in Location 

)Z( is
�

 

(1,3) 105 
(1,5) 100 
(4,3) 110 
(5,1) 115 
(4,5) 100 

  

 
 

Table 3 : Calculation of semivariances % &2jiji )Z(-)Z(
2
1

),( ssss
����

�' : 

Locations 

),( ji ss
��

  
Euclidian Distance 

Calculations 

),( ji ss
��

'  

Distances 

2
ji

2
jiji )()(),( yyxxssd ����

��
 

Differences2 

% &2ji )Z(-)Z( ss
��

 

Semivariances 

),( ji ss
��

'  

(1,5),(4,3)  sqrt[(1-4)2 + (5-3)2] 3.606 100 50 
(1,5),(1,3)  sqrt[02 + 22] 2 25 12.5 
(1,5),(4,5)  sqrt[32 + 02] 3 0 0 
(1,5),(5,1)  sqrt[42 + 42] 5.657 225 112.5 
(4,3),(1,3)  sqrt[32 + 02] 3 25 12.5 
(4,3),(4,5)  sqrt[02 + 22] 2 100 50 
(4,3),(5,1)  sqrt[12 + 22] 2.236 25 12.5 
(1,3),(4,5)  sqrt[32 + 22] 3.606 25 12.5 
(1,3),(5,1)  sqrt[42 + 22] 4.472 100 50 
(4,5),(5,1)  sqrt[12 + 42] 4.123 225 112.5 

 

Table 4 : Binning the empirical semivariogram % &�
�

�
)(

1k

2
ji )Z(-)Z(
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1
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ss

hm
h

�
��

�
�

' with lag 1�h
�

 meter: 

Lag distances in meters Distance Pairs Average Distance Semivariance ),( ji ss
��

'  Average ),( ji ss
��

'  

From 1 to 2 2, 2  2 12.5, 50  31.25 
From 2 to 3 2.236, 3, 3  2.745 12.5, 12.5, 0  8.33 
From 3 to 4 3.606, 3.606  3.606  50, 12.5  31.25 
From 4 to 5 4.472, 4.123  4.298  50, 112.5  81.25  
More then 5 5.657  5.657  112.5  112.5  

 
Question: How does one find a lag size? A rule of thumb is to multiply the lag size by the number of 
lags; the product of these numbers should be about half the largest distance among all points. 

 
So far, the values in the semivariogram cloud are put into bins based only on the distance. 
This variogram is called omnidirectional and isotropic (Greek “iso” + “tropic” = English 
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“same” + “trend”). So far, the direction between a pair of locations of lag h was not specified 
in order to constrict the variogram, but variation may depend on direction, not just distance.  
 
There are two types of directional components that can affect the predictions in output 
surface: 

�  A global trend is an overriding process that affects all measurements in a deterministic 
manner. The global trend can be represented by a mathematical formula (e.g., a polynomial) 
and removed from the analysis of the measured points but added back before predictions 
are made. This process is referred to as de-trending. 

�  Anisotropy (Greek “an” + “tropic” = English “not-” + “trend”) is a characteristic of a random 
process that shows higher autocorrelation in one direction than another.  

 
Anisotropy arises due to directionality of a process, for example, sand content in a narrow 
flood plain has much greater spatial dependence along the axis parallel to the river; 
secondary mineralization is changing near an intrusive dyke; population density is different in 
a hilly terrain with long, linear valleys. 
 
So here again, the notion of the phenomenon, such as anisotropy and respective directional 
empirical variogram, can be brought back. A directional variogram defines the spatial 

variation among points separated by space lag h
�

. The difference from the omnidirectional 

variogram is that h
�

 - a vector rather than a scalar. The number of directions may be different.  
A directional variogram is estimated using the same equation as the omnidirectional. Note 
that nugget must logically be isotropic (it is variation at a point). 
 

   

Figure 18 : Point pairs are grouped based on common separation distances and directions (bandwidth 
sectors) 

 
The indicators of anisotropy are that the semivariogram is changed notably; ranges and/or sills are 
considerably different for the respective directions. There are two types of anisotropy indicators: 

1. Sill is the same, but different ranges in different directions; this is geometric, or also called 
affine, anisotropy. 

2. Range is the same, but sill varies with direction, this is zonal anisotropy. 
 
See more about types of anisotropy at 
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Accounting_for_directional_influ
ences. 
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Figure 19 : Zonal anisotropy: variogram (range) changes notable and depends on search directions 
(respectively north-west and north–east search directions) 

Therefore, if directional differences in the spatial dependences are detected, it can be accounted 
for in the semivariogram or covariance models. This, in turn, has an effect on the geostatistical 
prediction method. 

 
Another measure that is used to estimate the strength of a spatial correlation as a function of 
distance is auto-covariance and autocorrelation. The spatial auto-covariance is computed within 
the same variable, using pairs of observations. Each pair of observations ),( ji ss

��
 has a 

)Z -))(Z(Z -)(Z( ji ss
��

 auto-covariance, showing how they jointly differ from the variable’s Z  mean. 

Spatial autocorrelation can also be analyzed using covariance functions and correlograms. The 
auto-covariance function is ))Z( ),Z(cov(),( jiji ssssC

����
� , where cov is the covariance. See more 

about the measures of spread at the 
http://www.spatialanalysisonline.com/output/html/Measuresofspread.html. 
 
The covariance depends on the separation between points. The individual covariance has to be 
summarized as a auto-covariance function of spatial separation. Once this is done, then the 
covariance between any two locations in space can be predicted. 
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Figure 20 : The anatomy of auto-covariance function and the auto-covariance function’s view in ArcGIS 
Geostatistical Analyst 

The idea of correlation to one variable is called auto-correlation (the prefix auto- means “self” and 
refers to a single variable). In such cases, a correlation is controlled by some other dimensions, 
such as space, if the variable is collected at points in space or time, if the variable is collected as a 
time-series. A measure of how much the variable is correlated to itself, considering the other factor 
(time or space), is auto-correlation. 
 
Auto-covariance is just a scaled version of auto-correlation. Auto-correlation 

)0()/()/,( ),( 2
jiji ChCssCssr

�����
�� �  is just auto-covariance normalized by total variance ( )0(C  - 

variance with distance equals 0), when two locations, is
�

 and js
�

 are close to each other, then they 

are expected to be similar, so their auto-covariance (auto-correlation) will be large. The population 

standard deviation is �
�

�
n

1k

2
k )Z -)(Z(

n
1
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� . As is
�

 and js
�

get farther apart, they become less 

similar and so their covariance becomes zero.  
 
The following expression is known as the autocorrelation coefficient for lag of h

�
.  
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The top part of this expression is like the covariance, but at a lag of h
�

, and the bottom is like the 
covariance at a lag of 0. These two components are the autocovariance at h

�
 and 0 lags. The set of 

values { )(hr
�

} can then be plotted against the lag h
�

, to see how the pattern of correlation varies 
with lag. This plot is known as a correlogram, and provides a valuable insight into the behavior of 
the autocorrelation at different lags or “distances”.  
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Figure 21: The anatomy of a correlogram 

Summary: 
�  The covariance function decreases with distance, so it can be considered a similarity 

function.  
�  The semivariance of the difference increases with distance on semivariogram, so it can be 

considered a dissimilarity function.  
 
There are mathematical relationships between the semivariogram and the covariance functions that 
appear as ),( - sill ),( jiji ssCss

����
�' . If the regionalized variable is stationary, the semivariance for a 

distance d is equal to the difference between the variance and the auto-covariance for the same 
distance: 
 

 

Figure 22 : Relationship between semivariance '  and autocovariance )(dC  for a stationary regionalized 

variable. Where )0(C  is the variance of the observation, or the auto-covariance at 0 �d . 

If the regionalized variable is not only stationary, but also is standardized to have a mean of zero and 
variance of 1, the semivariogram is a mirror image of the autocorrelation function: 

 

Figure 23: Relationship between semivariance and autocorrelation for a stationary regionalized variable 
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So far, the models of empirical semivariogram and covariance clouds, which provide information on 
the spatial autocorrelation of datasets, have been discussed. However, empirical semivariogram 
and covariance models do not provide information for all possible directions and distances. The 
main application of geostatistics is the prediction (optimal interpolation) of attribute values at 
unsampled locations (kriging). 
 
For this interpolation reason, it is necessary to fit or approximate the empirical 
semivariogram/covariance cloud by a continuous function or curve. This function is described the 
theoretical variogram model, which expresses semivariance as a function of separation vector. The 
theoretical variogram model is a function that will characterize the dependence existing between 
variables at different points in space. This dependence is assumed to be a function of the distance 
and direction that separates values of variables.  
 
This fitted model is used in the kriging equations. Abstractly, this is similar to regression analysis, 
where a continuous line or a curve of various types is fitted. However, only some functions can be 
used (authorized models) to fit semivariogram and covariance clouds. Any variogram function must 
be able to model the following: monotonically increasing values, possibly with a fluctuation (hole); 
constant or asymptotic maximum (sill), non-negative intercept (nugget) and anisotropy. Theoretical 
variograms must obey mathematical constraints so that the resulting kriging equations are solvable 
(e.g., positive definite between-sample covariance matrices). 
 
The following functions are authorized to model the empirical semivariogram: circular, spherical, 
tetraspherical, pentaspherical, exponential, Gaussian, rational quadratic, hole effect, K-Bessel, J-
Bessel, etc (see the descriptions of some mathematical models at 
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?topicname=how_kriging_works). Any linear 
combination of authorized models is also authorized.  
 
The selected model influences the prediction of the unknown values, particularly when the shape of 
the curve near the origin differs significantly. The steeper curve near the origin will bring the more 
influence of the closest neighbors to the prediction. As a result, the output surface will be less 
smooth. 
 

  

Figure 24 : Comparison of variogram models and spherical model (blue curve), which is derived from the 
intersection of random spheres of a given size, is used to fit the empirical variogram. 

 
There are no exact rules on choosing the “best” variogram model or function. Each model is 
designed to fit different types of phenomenon more accurately. For example, a Gaussian model 
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might be expected for a phenomenon that physically must be very continuous, such as the surface 
of a ground-water table. A model that looks appropriate could be picked up based on an expert’s 
examination of empirical semivariogram or covariance functions, and validation and cross-
validation statistics as a guide can be used (will be discussed later in the module). 
 
Let’s look on an example of a theoretical variogram. The theoretical variogram is needed because 
the empirical semivariogram values cannot be used directly in the matrix calculations in the kriging 
system (discussed in next section). Thus, values from empirical variograms can introduce negative 
standard errors for the predictions. Instead, the authorized fitted model has to be used when 
determining semivariogram values for various distances. These authorized models are designed in 
such way that they cannot introduce negative standard errors for the predictions. 
 
The empirical variogram in the previous example was calculated as the following:  

Lag distances in meters 

)(h
�

 

Empirical semivariances 

)(h
�

'  

From 1 to 2 31.25 
From 2 to 3 8.33 
From 3 to 4 31.25 
From 4 to 5 81.25  
More then 5 112.5  

 
For example, a simple linear authorized model may use hch

��
��  )(' , where c  is constant and 

defines the slope of the theoretical variogram line. Based on the regression analysis adjustment for 
the averaged ),( ji ss

��
'  from the table above, c  is calculated to be 13.5. So, the theoretical model 

will be hh
��

3.51 )( �' . 
 
Based on this model, the theoretical semivariances between known points ),( ji ss

��
'  are calculated 

and presented in the following table: 
 
Locations 
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Distances 
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Theoretical semivariances 

hss
���

3.51 ),( ji �'  

(1,5),(4,3)  3.606 48.681 
(1,5),(1,3)  2 27 
(1,5),(4,5)  3 40.5 
(1,5),(5,1)  5.657 76.3695 
(4,3),(1,3)  3 40.5 
(4,3),(4,5)  2 27 
(4,3),(5,1)  2.236 30.186 
(1,3),(4,5)  3.606 48.681 
(1,3),(5,1)  4.472 60.372 
(4,5),(5,1)  4.123 55.6605 
 

The following is a conceptual summarization of the variography technique:  
�  A quantitative measure of the data value confidence is a statistical parameter called variance. 

Variance is a measure of the uncertainty of a value. In the kriging method, every known data value 
and every missing data value has an associated variance. For a constant or exact known value, the 



Spatial anglysis and modeling 

© National Land Service under the Ministry of Agriculture, 2007 
142 

variance is zero. In worst case scenarios, when there is no trust on a data value, the variance of 
such a value is one on a normalized scale.  

�  Conceptually, as it is shown later on, the variance in kriging plays the role of a weighting function. 
For example, there is a single data value with zero variance. On can be relatively assured that the 
missing values physically close to the known location will be well approximated by the known value. 
With the points further away, there will be less certainly about unknown values; the uncertainty 
increases with distance from the known value.  

�  Variance for each known data value can be set to the uncertainty of that value. The estimation for 
each of the unknown values is more concerned with the relative changes of uncertainties rather than 
with their absolute values.  

�  Each known data value has a variance function associated with it that is used to determine variance 
of data values around the known location. The shape of the function is empirical and can be one of 
four forms: linear, spherical, exponential, or Gaussian. These curves have their minimum value 
(usually 0) at the known data location and their maximum value (usually 1) at some specified 
distance (range) away from that point. All locations outside the range are considered to be 
unaffected by the known data value. Just as one value for the uncertainty of all known data values 
can be set, the same, one range can be used throughout the calculations.  

�  The variance and range allows for a variance discontinuity at the known data value, commonly 
referred to as the nugget. This causes a step increase in variance just away from the known data 
value. In the best case scenario, this value set would be 0, producing no nugget effect. 

�  The variogram is estimated from the data in two steps: 
1. At first, the empirical variogram is estimated with a particular lag size and anisotropy 

parameters; 
2. In addition, a model to theoretical variogram is fitted with a particular authorized function. 

4.4.2. Kriging: Regionalized Variable Theory 

A unique aspect of geostatistics is the use of regionalized variables, which are variables that fall 
between random variables and completely deterministic variables – a concept that assumes the 
spatial variation of regionalized variables is sum of:  

�  Structural deterministic component, having constant mean or trend - )( is
�

�  
�  Random, but spatially correlated component - )( is

�
�  

�  Spatially uncorrelated random noise - )( is
�

�  
 
Thus, random regionalized variables  )z( is

�
 at locations is

�
 is described as 

)()()(  )z( iiii ssss
����

��� ��� . In this model, the nugget effect can be composed of the variance of 
)( is

�
�  that is called micro-scale variation, plus the variance of )( is

�
�  that is also called 

measurement error. 
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Figure 25 : Kriging methods depend on mathematical and statistical models. Kriging methods rely on the 
notion of autocorrelation.  

The general formula for Kriging interpolators is formed as a weighted sum of the data:  
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n
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ii0 )()z( sZs

��
� , where )( isZ

�
is the measured value at the i-th location, i�  is an unknown weight 

for the measured value at the i-th location, )z( 0s
�

 is the prediction in location 0s
� and n is the number 

of measured values. Each point )z( 0s
�  is predicted as the weighted average of the values at all 

sample points )( isZ
�

. 
 
Kriging is similar to IDW in that it weights the surrounding measured values to derive a prediction 
for an unmeasured location. The general formula for both interpolators is formed as a weighted 
sum of the data. However, in IDW, the weight depends solely on the distance to the prediction 
location. Kriging weights come from a semivariogram that was developed by looking at the spatial 
nature of the data - the spatial autocorrelation is quantified by using semivariances. Thus, kriging is 
based on the theory of random processes, with covariances depending only on separation (i.e. a 
variogram model). Nevertheless, in Kriging the weights are based not only on the distance between 
the measured points and the prediction location, but also on the overall spatial arrangement among 
the measured points.  
 
In addition, the weights used in kriging involve not only the semivariances between the points to be 
established and the known points (IDW method uses distances between the points to be 
established and the known points), but also those between the known points. 
 
Various kriging techniques are based on certain assumptions. Thus simple kriging is linear with a 
known trend; ordinary kriging is linear with an unknown flat trend; universal kriging is linear with an 
unknown polynomial trend; co-kriging is linear and multivariate and can have different types of 
trends; Trans-Gaussian kriging is linear after transformation with a flat trend; indicator and 
disjunctive kriging is non-linear and works with threshold or binary data; block kriging is linear and 
works with average value over some small area (block) rather than at a point. 
 
First, let us examine ordinary kriging. In ordinary kriging, the i�  weight depends on a fitted model 
to the measured points, the distance to the prediction location, and the spatial relationships among 
the measured values around the prediction location. Predictions are made as linear combinations 
of known data values (a weighted average). The ordinary kriging prediction is unbiased. The 
known points are predicted exactly; they are assumed to be without error, even if there is a nugget 
effect in the variogram model. 
 
In ordinary kriging it is also true what points closer to the point are predicted to have larger weights. 
Clusters of points “reduce to” single equivalent points (i.e., over-sampling in a small area cannot 
bias result). Closer sample points “mask” further ones in the same direction. Error estimates are 
based only on the sample configurations, not the data values. 
 
The theory of regionalized variables leads to an “optimal” interpolation method, in the sense that 
the prediction variance is minimized. In ordinary kriging, prediction error should be as small as 
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possible. Ordinary kriging, as a “best linear unbiased predictor”, has to satisfy certain criteria for 
optimality. However, it is only “optimal” with respect to the chosen fitted model! 
 
In ordinary kriging models the value in location )()(  )z( iii sss

���
�� ��  is the sum of a regional mean 

)( is
�

� and a spatially-correlated random component )( is
�

� . The regional mean )( is
�

�  is estimated 
from the sample, but not as the simple average, because there is spatial dependence. It is implicit 
in the ordinary kriging system. Therefore, ordinary kriging predicts at points, with unknown mean 
(must be estimated) and there is no trend (or flat trend).  
 
When making predictions for several locations with ordinary kriging, it is expected what some of the 
prediction values will be above the actual values and some below. Nevertheless, on average, the 
difference between the predictions and the actual values should be zero (first order stationary 
condition). This is referred to as “making the prediction unbiased”  and this is the main constraint of 
ordinary kriging. Formally, this constraint can be used to satisfy the sum of the weight i�  assigned 
to each sample point sum to one. The unbiased condition is: 
 

1
n

1i
i ��

�
�  

 
The variance at any point is finite and the same at all locations in the field; and the covariance 
structure depends only on the separation between point pairs (second order stationary condition).  
 
Using the unbiased constraint together with an “optimal” interpolation assumption that the 

prediction variance is as small as possible - min))()(z(
n

1i

2
ii0 �� �

�
sZs
��

� , that is the difference 

between the true value )z( 0s
�

 and the predictor )( ii sZ
�

� in unknown location 0s
�

. The solution to the 
minimization, constrained by unbiasedness, gives the ordinary kriging equations: 
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or in matrix notation: b�A �� , where �
�

�
 
!

" *
�

01

1

T
A , �

�

�
 
!

"+
�

)
� , �

�

�
 
!

"*
�

1

0b . See more about 

matrix expressions at the http://www.spatialanalysisonline.com/output/html/Matrixexpressions.html. 
 
The ij'  semivariance values in matrix A  and b  are taken from the mathematical expression of the 

semivariogram (fitted model). Also, a fourth variable is introduced called the LaGrange multiplier 
) , to assure that the minimum possible estimation error is obtained. The )  depends on 
covariance structure of the sample points. 
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This is a system of 1n �  equations in 1n �  unknowns, so can be adjusted optimally, as long as A  
is a positive definite matrix and this is guaranteed by using authorized fitted models! This system 
has the following solution in matrix notation: 
 

bA� -1� , where 1-A  is inversed matrix of A . 
 
The weights for each predicted point, based on the point configuration and the modelled variogram, 
are computed by an optimization criterion, which in ordinary kriging is minimizing the prediction 
variance. 
 
The term “ordinary” infers there is no trend or strata; the regional mean must be estimated from the 
sample. One of the main issues concerning ordinary kriging is whether the assumption of a 
constant mean is reasonable. Sometimes there are good scientific reasons to reject this 
assumption.  
 
Ordinary kriging can use either semivariograms or covariances to express autocorrelation, it can 
use transformations and remove trends, and it can allow for measurement error. The ordinary 
kriging prediction error or kriging variance �ˆ  at a point depends on the semivariances between the 
prediction point and the sample points b  and the weights (including LaGrange multiplier) �  
computed in the ordinary kriging system. The ordinary kriging variance at the point is computed 

from �b)(ˆ 0
2 Ts �

�
� . 

 
The variance measure �ˆ  is the important difference between kriging method and other 
interpolation methods e.g. IDW. The �ˆ  can be used for each predicted point to estimate the 
reliability of interpolation. 
 
Ordinary kriging can be summarized by engaging in the following computational steps when 
predicting the value for each unsampled point: 
 
1. Compute distances between all pairs of sample points and after compute the respective 
semivariances using the fitted variogram model and these distances for matrix A .  
 
2. Compute distances between the prediction unknown point and each sample known point and 
after compute the respective semivariances using the theoretical variogram model and these 
distances for the vector b .  
 
Steps 1 and 2 of the kriging system use modeled (or fitted, or theoretical) semivariances. Different 
fitted models could give different kriging weights to the sample points and these will give different 
prediction results.  
 
3. Complete A  and bwith 1’s and a 0. 
 
4. Solve the kriging system of linear equations for the n weights i�  and the LaGrange multipler ) . 
The kriging equations are solved separately for each point 0s

�
, using the semivariances around that 

point, in a local neighborhood; this gives a different set of weights i�  for each point to be predicted. 
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5. Predict the point as the weighted average by i�  of the sample points from �
�

�
n

1i
ii0 )()z( sZs

��
� .  

6. Compute the prediction error �ˆ  as the scalar product of b  and the �  vector. 
 
Note: The variogram model )(h

�
'  used in these equations is estimated only once, using information 

about the spatial structure over the whole study area, and so, the semivariances between sample 
points ),( ji ss

��
'  are computed only once for any point configuration. However, the semivariances at 

a sample point ),( 0i ss
��

'  must be computed separately for each point to be predicted. 
 
Let’s consider a sample from the following locations: 
 

Locations 

),( ii yxs
�

  
(2,2) known 
(4,6) known 
(8,5) known 
(5,5) unknown 

  

  
 

Exponential fitted model )-(1)(
)(-

a
h

ech

�

�
�'  is used with the following variogram parameters: sill 

10�c , effective range 5.1�a , and nugget 00 �c  to fit theoretic variogram. Based on this model, 

semivariances between known points ),( ji ss
��

'  and known and predicted point ),( 0i ss
��

'  are 

calculated and presented in the following table, as well as distances: 
 
Location 

pairs 
Distances 

between sample 

points ijd  

Distances between 
sample points and 

prediction point i0d  

Semivariances 
between sample points 

),( ji ss
��

'  

Semivariances between 
sample points and 

prediction point ),( 0i ss
��

'  

(1,2) 4.472  9.493  
(1,3) 6.708  9.886  
(1,4)  4.243  9.409 
(2,3) 4.123  9.360  
(2,4)  1.414  6.105 
(3,4)  3  8.647 

 
Ordinary kriging equations, which based on Exponential fitted model, can be represented as the 
following matrix: 
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Solution of these equations will be the weights i� : 
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) 1.6990883

2689101.0

5321374.0

1989525.0
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The unbiasedness constraint is satisfied - 1  0.2689101  0.5321374  0.1989525 ��� . The prediction 
error �ˆ  can be computed as: 
 

% & 145.9

1.6990883

2689101.0
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1989525.0

18.6476.1059.409)(ˆ 0
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Now let us briefly at other kriging techniques. There may be situations where the regional mean is 
known. Sometimes it makes sense to assume a physically-based model that gives a known trend. 
In the simple kriging model, the value in location )(  )z( ii ss

��
�� ��  as the sum of a known constant 

�  and a spatially-correlated random component )( is
�

� . For simple kriging, because �  is known 
exactly, )( is

�
�  is also known exactly at the known locations. If )( is

�
� is known, then it is easier to 

estimate the autocorrelation than if )( is
�

�  had been estimated. Simple kriging uses the residuals 
(the difference between the model and the observations), assuming that the trend in the residuals 
is known to be zero.  
 
There is no need for a LaGrange multipler in the simple kriging system. The simple kriging estimate 

without the constraint that weights sum to 1, that is 1
n

1i
i 
�

�

� . However, any bias from the weights 

must be compensated with respect to the (known) mean when predicting at a point. The equations 
of the simple kriging system are: 
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Simple kriging also allows for measurement error.  
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The theory of regionalized variables can incorporate cases of first-order non-stationarity (i.e. where 
a significant trend surface to the geographic coordinates exists or strata have significantly different 
means). The intrinsic hypothesis only needs local first-order stationarity, so ordinary kriging can be 
applied in local neighborhoods and would work in these cases. However, even then, useful 
information about spatial structure is discarded. Accounting for a global trend would improve 
predictions and allow one a better understanding of the processes that form the spatial variation. 
 
Specially designed kriging methods could model both a global trend or stratification, and a local 
spatial-dependence structure at the same time. One such method is universal kriging – a 
procedure that includes a global trend as a function of the geographic coordinates within the kriging 
system. Another one is regression kriging, also called “kriging after de-trending”, that models the 
trend (geographic or feature space) and its residuals separately. 
 
Universal kriging is a mixed interpolator that models a global trend as a function of the 
geographic coordinates in the kriging system. In universal kriging, the value of variable z  at 
location is

�
 is modeled as the sum of a regional non-stationary trend )( is

�
�  and a spatially-

correlated random component )( is
�

� : 
 

)()(  )z( iii sss
���

�� �� , where )( is
�

�  is not a constant as in ordinary kriging, but a deterministic 
function of position (in geographic space) (i.e. the global trend). This trend is modeled as a linear 
function of p -order known base functions )(f ij s

�
 (e.g. global polynomials) and p  unknown constant 

coefficients (or model parameters) j#  as )()(f  )z( i

p

0j
ijji sss

���
�# �� �

�

. The )( is
�

�  is the spatially-

correlated error, which is modeled as before, with a variogram, but now only considering the 
residuals, after the global trend is removed. A universal kriging point is predicted the same as in 

ordinary kriging - �
�

�
n

1i
ii0 )()z( sZs

��
� , only the weights i�  for each sample point take into account 

both the global trend and local effects. 
 
The sample base functions for linear drift (or for first order polynomial) are 1)(f i0 �s

�
, xs �)(f i1

�
, 

ys �)(f i2
�

, where x  is abscissa and y  the ordinate of a point. For quadratic drift, also second-order 

terms will be included that are 2
i3 )(f xs �

�
, xys �)(f i4

�
 and 2

i5 )(f ys �
�

. Note that 1)(f i0 �s
�

 estimates 
the global mean as it is in ordinary kriging.  
 
The unbiasedness condition for universal kriging is expressed with respect to the trend as well as 

the overall mean (as in ordinary kriging): )(f)(f 0j

p

0i
iji ss

��
��

�

�  and 1
n

1i
i ��

�
� . The expected value at 

each point of all the functions must be that predicted by that function. The first of these is the 
overall mean as in ordinary kriging. 
 
The semivariances ),( ji ss

��
'  for universal kriging are based on the residuals, not the original data, 

because the random part of the spatial structure applies only to these residuals. The fitted model of 
variogram is obtained in three steps: 

1. Calculate the best-fit trend surface that will be used in universal kriging 
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2. Subtract trend from the sampled values to get residuals 
3. Model the variogram of the residuals 

 
The model parameters for the residuals will usually be very different from the original variogram 
model. It often has a lower sill and shorter range because the global trend has been taken out of 
some of the variation and the long-range structure. 
 
The universal kriging system solves the following equations: 
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Global universal kriging can be using all sample points when predicting each point. This gives the 
same results as regression kriging. Such global variation is appropriate if there is a regional 
trend. Universal kriging can also be local when the number sample points are restricted to 
neighbours around the prediction point. Local variation of universal kriging allows the trend surface 
to vary over the study area, since it is re-computed at each point. Similar to simple kriging, if the 
trend is known, a “simple” variant can be used to universal kriging. 
 
In regression kriging, )( is

�
�  can be obtained by subtracting the p -order polynomial from the 

original data, when )( is
�

�  are assumed to be random. The mean of all )( is
�

�  is 0. Conceptually, the 
autocorrelation is now modeled from the random errors )( is

�
� . Regression kriging can be 

considered as a type of a polynomial regression. However, instead of assuming the errors )( is
�

�  
are independent, they are modeled as if autocorrelated. Universal and regression kriging allow for 
measurement error as well.  
 
Regression kriging is accomplished by taking the following steps: 

1. Calculate trend and get its prediction error of linear model 
2. Subtract trend to get residuals for known points 
3. Model the kriging residuals – this can be done for simple kriging when the known mean of 

the residuals is 0 and the prediction error of residuals can be determined  
4. Add trend back to modeled residuals in order to get estimates in unknown points 
5. Add the two prediction variances (prediction error of linear model and prediction error of 

residuals) at each point to get the overall error 
 
It may be the case that the observed data is binary (with values of 0 or 1) or a variable that is 
continuous may be reclassified into a binary variable by choosing some threshold. For example, if 
values are above the threshold, they become a 1, and if they are below the threshold, they become 
a 0. For example, surface can be classified as land as 1 and water body as 0. The indicator 
kriging model is )()(  )z( iii s�ss

���
�� � , where )( is

�
�  is an unknown constant and� )( is�

�
 is a binary 
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variable. Using binary variables, indicator kriging calculates exactly the same as ordinary kriging. 
The interpolations will be between 0 and 1 and predictions from indicator kriging can be interpreted 
as probabilities of the variable being a 1 or of being in the class that is indicated by a 1.  
 
The extension of the theory of kriging of regionalized variables to several variables, which have a 
multivariate spatial cross-correlation as well as the individual univariate spatial auto-correlation, is 
called co-regionalization. Co-kriging is a method of using supplementary information on co-
regionalized variables (co-variables) to improve the prediction of a target variable.  
 
The idea of co-regionalization is that the process that drives one variable is the same, or at least 
related to, the process that describes the other variables. For example, distribution of heavy metals 
in soil can relate pollution or distribution of water pH level can relate to pollution and elevation. All 
the variables involved have to be regionalized variables and, in addition, if they are related both in 
geographic space, they are co-regionalized. 
 
For example, a target variable has relatively few observations and can involve expensive additional 
measurement. However, when more values of a second variable are available and a second 
variable is co-related with the target variable, then this becomes the co-variable. This second 
variable is, for example, easy and cheap to measure, so there are many observations of it. 
Typically, there are more observations of the co-variable (i.e. the target variable was not measured 
at some points). 
 
Therefore, for theory of co-regionalization involves two types of variograms: the first variogram is 
direct - that is a single variogram for each regionalized variable; the second is a cross variogram – 
a  pair of regionalized variables. The cross empirical variogram will be estimated for distances that 

are multiples of h
�

as % & % &�
�

��
)(

1k
j2i2j1i12,1 )(Z-)(Z)(Z-)(Z

)(2
1

)(
hm

ssss
hm

h

�

�����
�

' , where are )(Z i1 s
�

 is a target 

or main variable of interest and )(Z i2 s
�

 is a co-variable or co-regionalized variable. Cross-
variograms can depict either a positive or a negative spatial correlation. 
 
The direct and cross-variograms must be modeled together, with some restrictions to ensure that 
the resulting co-kriging system can be solved. Therefore, the co-kriging method uses information 
on several variable types. The general models of ordinary co-kriging are:  
 

)()(  )(z i1i1i1 sss
���

�� ��  
)()(  )(z i2i2i2 sss

���
�� ��  

 
Where )( i1 s

�
�  and )( i2 s

�
�  are unknown constants. There are two types of random errors, )( i1 s

�
�  and 

)( i2 s
�

� , so there is autocorrelation for each of them and cross-correlation between them. Ordinary 
co-kriging attempts to predict )(z i1 s

�
, just like ordinary kriging, but it uses information in the 

covariate , -)(z i2 s
�

 in an attempt to do a better prediction.  
 
The target variable is )(z i1 s

�
, and both autocorrelation for )(z i1 s

�
 and cross-correlations between 

)(z i1 s
�

and the other variable type )(z i2 s
�

 are used to make better predictions. It uses information 
from co-variable )(z i2 s

�
 to help make predictions, but it requires much more estimation, which 

includes estimating the autocorrelation for each variable, as well as all cross-correlations. 
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Theoretically, co-kriging can do no worse than kriging because, if there is no cross-correlation, it 
backs on to a just autocorrelation for )(z i1 s

�
. However, practically, the estimation of unknown 

autocorrelation parameters can introduce more variability and decrease the calculation precision of 
the predictions.  
 
The formula for ordinary kriging interpolators is formed as a weighted sums of the data and will be 

��
��

��
n

1i
i2i

n

1i
i1i0 )()()z( sZsZs

���
.� , where )( i1 sZ

�
is the measured value of target variable, i�  is an 

unknown weight for the measured value for the target variable; )( i2 sZ
�

is the measured value of co-
variable, i/  is an unknown weight for the measured value for the co-variable; )z( 0s

�
 is the 

prediction in location 0s
� and n is the number of measured bin’s values.  

 
The other co-kriging methods, including universal co-kriging, simple co-kriging, indicator co-kriging, 
are all generalizations of the foregoing methods to the case where multiple datasets are used. Co-
kriging can allow for measurement error in the same situation as for the various kriging methods 
(ordinary kriging, simple kriging, and universal kriging).  
 
The kriging methods also can be summarized as steps in optimal spatial prediction modeling:  

1. Sample phenomena (e.g. long-term average values of water levels), preferably at different 
resolutions: 

 
 

2. Calculate the experimental variogram: 

 
 

3. Check for trend (e.g. visualize by global polynomial). If it exists, fit with a trend surface 
model (here is linear in north-west direction): 
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4. Model or fit the variogram with one or more authorized functions to the residuals 
)(  )z()( iii sss

���
�� �� . The )( is

�
�  is obtained by subtracting the first-order polynomial (top-left-

hand figure) from the original data. Each blue curve on the left-hand variogram represents 
the fitted spherical model for the particular search direction (e.g. north, north-west, etc.) 
(anisotropy models). In the right-hand variogram, the north-west fitted model (blue curve) 
follows the major range’s direction. 

 

  
 

5. Some kriging systems, with the variogram models of spatial dependence, can be applied to 
produce kriging predictions based on the variogram and trend model at each predicted 
point. Predictions are often done at each point on a regular grid (e.g. a raster map). For a 
local approach, the kriging equations are solved separately for each point 0s

�
, using the 

semivariances around that point, in a local neighborhood; this gives a different set of 
weights i�  for each point to be predicted (left-hand figure). The predicted plot of the fitted 
line through the scattered known points is given in blue with the equation given just below 
the plot (shown on the right-hand figure). If the data were not autocorrelated, all predictions 
would be the same or every prediction would be the mean of the known data, in this case 
the blue line would be horizontal. With autocorrelation and a good kriging model, the blue 
line should be closer to the black dashed line. 
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6. Calculate the error of each prediction; this is based only on the sample point locations, not 
their data values. The error plot is the same as the prediction plot, except that the known 
values are subtracted from the predicted values (left-hand figure). For the standardized error 
plot, the known values are subtracted from the predicted values, and then divided by the 
estimated kriging prediction errors �ˆ  and other derivative standardized errors (right-hand 
figure).  

 

  
 

7. Map the predicted values: 
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4.5.  Model Validation  
 
With any interpolation method, one would like to know how good  the results will be. The model, 
therefore, needs justification. This involves a model validation approach and methodology. Model 
validation needs to be applied during the building of the model, including calibration of the model. 
 
The main approaches used to compare model predictions with reality are: 

1. Use of independent measures of validity for data and models; some of the measures can 
be represented as a surface. 

2. Separate validation dataset by dividing it into two samples - the training dataset and the 
test dataset - and compare the predicted values used from training datasets for specified 
locations with the values from the test datasets. 

3. Cross-validation using calibration datasets. 
4. Create many interpolation surfaces and use measures when comparing models. 

4.5.1. Data Validity 

Kriging is based on data modeling. The data have to be tested before they are used in spatial 
modeling in order to allow for proper interpretation. 
 
At the data exploration stage, usually preceded by interpolation, the data have to be examined for 
normality, outlets, global trend, stationarity, spatial autocorrelation, etc. Some of the kriging and co-
kriging methods (e.g. ordinary kriging) require that the data come from normal distributions, 
therefore, data has to be explored for normality. If data did not normally distributed, normal score 
transformations may be necessary to apply to the data.  
 
The indicators (measures) that data is normally distributed can be obtained from a histogram. For a 
normal distribution, a histogram has the unimodal bell shape, the mean and median values are 
very close, and the kurtosis is close to 3. Normality also can be verified with numeric tests (e.g. 
Shapiro-Wilks or Anderson).  
 
In addition, the Normal QQPlot of the quantiles of the input dataset versus quantiles of the 
standard normal distribution can be used. QQ plots are graphs on which quantiles from two 
distributions are plotted relative to each other. For two identical distributions, the Normal QQPlot 
will be a straight line. Therefore, comparing this line with the distribution of sampled points on the 
Normal QQPlot provides an indication of univariate normality. If the distribution of sampled data is 
asymmetric (i.e., far from normal), the points will deviate from the Normal QQPlot line. 
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Figure 26 : The Normal QQPlot against the long-term average values of water levels, and the transformation 
options in the ESRI Geostatistical Analyst. See more about transformation at the 
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Box-
Cox%2C_Arcsine%2C_and_Log_transformations and 
http://www.spatialanalysisonline.com/output/html/Datatransformsandbacktransforms.html. 

 
One can use the global polynomial interpolation methods for visual inspection of linear or other 
trends in data. Cross-section plots of data values along ordinate and abscissa coordinate axes can 
also give an idea about global data trends.  
 

   

Figure 27 : The long-term average values of water levels has linear (first order) trend (the map on left- hand 
side). There is no explicit second order trend (the map on right hand side) 

 
The data outliers or abrupt changes in data values, which can be caused by real abnormalities in 
the phenomenon or measured errors, can be investigated by using the histogram (points on the tail 
of the distribution), semivariogram (pairs of points with high values in the semivariogram cloud, 
regardless of distance) and Voronoi diagram (high dissimilarity between neighbors). See about the 
Voronoi diagram at the http://en.wikipedia.org/wiki/Voronoi_diagram. 
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Figure 28 : View on the outlier – the point with 218 value 

The directional semivariogram can be used to investigate isotropic or anisotropic surfaces, as 
discussed in section 1.4. 

4.5.2. Independent Model Validity Measures 

Different independent measures of validity can be used to estimate an interpolation result.  
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Along with these measures are: 

Root-mean-squared error (RMSE) of the values or residuals - the actual value against estimated 

value from the model in the validation dataset - is �
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The kriging prediction error �ˆ  at a point or kriging variance at the point is computed from 
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Figure 29 : Prediction errors for the resulting surface of the long-term average values of water levels  

 

When one compares these models, one should look for a model that satisfies the following conditions: 
1. The lower root-mean-squared error  
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2. Mean error is near zero 
3. The mean standardized prediction error should be nearest to zero  
4. The average prediction error should be nearest to the root-mean-squared error 
5. The standardized root-mean-squared prediction error should be nearest to one 

 

Thus, the kriging prediction error �ˆ  can be estimated for each predicted point. Therefore, if a 
stochastic method, such as kriging is used, it allows the quantification of prediction errors and 
representation of these errors as an error surface or map. Deterministic interpolation methods 
(IDW, splines, etc) do not consider errors! Therefore, only RMSE could be used for comparisons 
between a deterministic method and another interpolation method. 
 
However, the question is “How to calculate RMSE for exact interpolation?” The RMSE for an exact 
interpolation can be calculated from cross-validation. In cross-validation, each sample point is 
removed; interpolation surface is created without this point, and this surface is compared to the 
predicted value for removed location. Such process is repeated for each sample point. The cross-
validation RMSE is a summary statistic quantifying the error of the prediction surface. See more 
about the cross-validation below in the text. 
 
So far, maps of predictions, called prediction maps or interpolated maps, were created. Prediction 
maps are produced from the interpolated values. An error map (e.g. the kriging prediction error 

map) shows error is simply the square root of the variance of a kriging prediction or estimate 2ˆ� . 
An error map quantifies the uncertainty of the prediction. If the data comes from a normal 
distribution, the true value will be within �  2 times the prediction error about 95 percent of the time. 
 
Besides making predictions, the variability of the predictions from the true values is estimated. If 
the average kriging prediction error is greater than the root-mean-squared error, the variability of 
the predictions is overestimated; if the average kriging prediction error is less than the root-mean-
squared errors, the variability in the predictions is underestimated.  
 

  

Figure 30 : The error map of long-term average values of water level estimates. Errors are larger in sparsely 
sampled areas 

It is possible to derive two other error estimation representations from the error map. These are  
quantile and probability maps. The values of a quantile map reflect the upper or lower limits of 
the true values. Quantile maps represent surfaces of values where the predictions exceed (or do 
not exceed) the values at the specified probability. For example, if the quantile probability is set up 
to 0.5, an output map will be produced the predicted median values at each known location. If the 
quantile probability is set up to 0.75, an output map will be produced where there is a 75% chance 
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that an unknown value is below the surface value, and a 25% chance that the unknown value is 
above the surface value. 
 

   

Figure 31: The quantile maps of long-term average values of water levels estimates respectively for the 
specified 0.5 and 0.75 quantile probabilities 

Probability maps show the probability that the true value is above (or below) some specified 
threshold value. For example, if the threshold value is set up to “exceed  100”, the map will show 
the surface of probabilities when values may exceed the 100-measurement mark. 
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Figure 32 : The probability map of long-term average values of water levels estimates when the specified 
threshold value exceeds  100  

In order to use probability and quantile maps confidently, the data have to come from a full 
multivariate normal distribution. 
 
Few graphical plots can be used for validation of results of kriging prediction. A scatter plot of 
predicted values (blue fitted line in the plot given below) versus sample values (dots) is one such 
plot. It might be expected that the fitted line will be a diagonal line (the black dashed line). 
However, the slope is usually less than one. It is a property of kriging that tends to under-predict 
large values and over-predict small values (that is result in surface smoothing), as shown in the 
following figure. 
 

 

Figure 33 : A scatter plot of predicted and sample values. The fitted line through the scatter of points is shown 
in blue with the equation given just below the plot. 

If the sample data were not autocorrelated or independent in space, every prediction would be the 
same and equal to the mean of the measured data. In such a case, the blue line would be 
horizontal. With autocorrelation and a right kriging model, the blue line should be closer to the 
diagonal black dashed line. The tighter the scatter about the diagonal line, the better. 
 
In addition, the error QQ-plot can be used to show the distribution of the prediction error against 
the corresponding standard normal distribution. The error plot is the same as the prediction plot, 
except the measured values are subtracted from the predicted values.  
 
For the standardized error QQ-plot, the sample values are subtracted from the predicted values 
and divided by the estimated kriging errors.  
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If the standardized errors of the predictions from their measured values are normally distributed, 
the points should be close to the dashed line that represents the normal distribution (in the plot 
given below). If the errors are normally distributed, it confirms the appropriateness of using the 
methods that rely on normality (e.g., ordinary kriging). 
 

 

Figure 34 : QQ-plot of the prediction standardized error. The long-term average values of water levels are close 
to the normal distribution 

4.5.3. Model Validation via Subsetting 

The most rigorous way to assess the quality of an output surface is to compare the predicted 
values for specified locations with those that are independently measured and used as control 
points. Two independent datasets are used for the validation. The validation first creates a model 
for only a subset of the data, which is called the training dataset, and afterwards uses the test 
dataset of control points to check the model. For example, the Root-mean-squared error between 
predicted training values and test values in control locations can be used for the assessment.  
 
In such a case, validation creates a model for only a subset of the data - the training dataset; 
therefore, it does not directly check a final model, which should include the entire available dataset. 
Rather, validation checks whether a training dataset model is valid, for example, choice of 
semivariogram model, lag size, and search neighborhood. The training dataset model is used for 
the whole dataset. 

4.5.4. Model Cross-validation 

If an independent data set is not available to evaluate a model, the same sample points, which 
were used to estimate the model, are used to validate that same model. Thus, cross-validation 
uses all of the data to estimate the trend and autocorrelation models. It removes each sample 
point, one at a time, and predicts the associated data value and prediction errors. By judging 
errors, outlets could be found and after completing cross-validation, some data locations may be 
set aside as unusual, and refine the trend and autocorrelation models.  
 
Cross- validation executes the following steps: 

1. Compute experimental variogram with all sample points and its theoretical model 
2. For each point: 

a. Remove the point from the sample set 
b. Predict at that point using the other points and the modeled variogram 

3. Summarize the deviations of the model from the actual point. Models can be compared by 
their summary error statistics, by also looking at individual predictions of interest. The 
following error statistics for cross-validation can be used: 

a. Root-mean-square error that is lower is better; it is computed for independent 
validation 
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b. The mean standardized prediction error of residuals with kriging variance; computed 
for independent validation 

 
Other than that, the types of graphs and summary statistics used to compare predictions to true 
values are similar for both validation and cross-validation.  
 

  

Figure 35 : Cross-validation removes each sample data location (red dot) one at a time and produces a model 

 

 

Figure 36 : Cross-validation results: cross-validation compares the measured and predicted values for all 
points 

With enough points, the effect of the removed point on the model, which was estimated using that 
point, is likely to be minor. 

4.5.5. Model Comparisons 

It is common practice to create many surfaces before one is selected as "best". Each surface 
systematically can be compared with another by using prediction errors. When comparing models, 
the “best” ones will be with the mean standardized prediction error nearest to zero, the smallest 
root-mean-squared error, the average prediction error nearest the root-mean-squared error, and 
the standardized root-mean-squared prediction error nearest to one. 
 
There are two issues to consider when comparing the results from different methods and/or 
models: one is optimality and the other is validity (or the correct variability). It is important to get the 

correct variability. In kriging, the predictions depend on the kriging prediction errors iˆ� .  
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For example, the root-mean-squared error may be smaller for a particular model. Therefore, this 
model may be considered as the "optimal" model. However, when comparing to another model, the 
root-mean-squared error may be closer to the average estimated prediction error. If the average 
kriging prediction error is close to the root-mean-squared prediction error, this is a more valid 
model, because only the estimated kriging prediction error assesses uncertainty of the prediction 
independently of the actual data values (only variogram model is required). If the average kriging 
error is greater than the root-mean-squared prediction error, the variability of predictions is over-
estimated; if the average kriging error is less than the root-mean-squared prediction error, the 
variability in predictions is under-estimated.  
 
Therefore, the variability in prediction can be assessed correctly by the root-mean-squared 
standardized prediction error. Thus, the root-mean-squared standardized error should be close to 1 
if the prediction kriging errors are valid.  

4.5.6. Data Sample Considerations 

Sample size and distribution can influence the accuracy of prediction. In general, more sample 
points are better - an increased sampling rate (samples taken closer together) and the local 
variation will be more accurately captured and appropriate for large-scale (small-area) studies. 
However, it will introduce a higher data gathering cost. With low density of sample points, the 
sensitivity of local variation will be lost and only the regional variation will be captured; this would 
be more appropriate for small-scale (large-area) studies. 
 
The purpose of sampling design is to establish the structure of spatial dependence (e.g. 
semivariogram) with a minimal number of samples that will produce optimal sample spacing on a 
map. Moreover, kriging methods include solutions to accomplish the task of sampling cost 
minimization. 
 
As mentioned above, in kriging the estimation error is based only on the sample configuration and 
the chosen model of spatial dependence, not the actual data values. Therefore, if the spatial 
structure (variogram model) is known, maximum or average prediction errors can be determined 
before sampling is computed. Based on the prediction errors, sampling decisions can be made 
based on a cost-benefit framework before fieldwork is undertaken. 
 
Optimal point configuration can be established based on the following optimization criteria of 
known kriging systems as some numerical measure of the quality of the sampling design:  

1. Minimize the maximum kriging prediction error in the study area 
2. Minimize the average kriging prediction error over the entire area 
3. Maximize the information in a sample variogram in order to allow reliable variogram 

estimation. 
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4.6.  Conclusion and Comparison of Geostatistical Methods  
 
The key concepts that were introduced in this module relate to spatial dependence or spatial 
correlation that is described in general as “the value of a variable at a point in space or time is 
related to its value at nearby points”. Knowing the values of sample points allows one to predict 
(with some degree of certainty) the value at any given chosen point.  
 
Here the concept of correlation between variables is applied to correlation within or to one variable, 
using distance or time to model the spatial relation. The auto-correlation term is used to describe 
such correlation. Main question was “How to describe the auto-correlation?” Spatial structure is the 
nature of the spatial relation: how far, and in what directions, is there spatial dependence? How 
does the dependence vary with distance and direction between points? 
 
A function of the distance and direction separating two locations is used to quantify autocorrelation. 
Spatial structure can be described by range, direction, and strength. The type of interpolation 
method that can be used will depend on many factors. A common approach is to try different 
interpolation methods and compare the results to determine the best interpolation method for a 
given situation. Still, real-world knowledge of the subject matter can affect what interpolation 
method to use. 
 
The quality of a sample point set can affect the choice of an interpolation method as well. Support 
of a sample or the physical dimensions it represents will define coarser or finer resolutions of the 
prediction result. 
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Some features of module interpolation methods are summarized in the following table: 
 

Method Type of 
Interpolator 

Output Map 
Type 

Advantages Disadvantages Assumptions 

Inverse 
Distance 
Weighted 

Deterministic 
interpolator 

Prediction Few parameter 
decisions 

No assessment of 
precision errors; 
produces "bulls eyes" 
a round data locations 

Not required 

Global 
polynomial 

Deterministic 
estimator 

Prediction Few parameter 
decisions 

No assessment of 
precision errors; may 
be too smooth: edge 
points have large 
influence 

Not required 

Local 
polynomial 

Deterministic 
estimator 

Prediction More parameter 
decisions 

No assessment of 
precision errors; may 
be too automatic 

Not required 

Splines Deterministic 
smoother 

Prediction Flexible and automatic 
with some parameter 
decisions 

No assessment of 
precision errors; may 
be too automatic 

Not required 

Kriging Stochastic 
predictor 

Prediction, 
Errors, 
Probability, 
Quantile 

Very flexible: allows 
assessment of spatial 
autocorrelation: can 
obtain prediction errors: 
many parameter 
decisions 

Need to make many 
decisions on 
transformations 
trends, models, 
parameters, and 
neighborhoods 

Some methods 
require that the 
data comes from a 
normal distribution 

Co-kriging Stochastic 
predictor 

Prediction, 
Errors, 
Probability, 
Quantile 

Very flexible: can use 
information in multiple 
datasets; allows 
assessment of spatial 
cross-correlation; many 
parameter decisions 

Need to make many 
decisions on 
transformations 
trends, models, 
parameters, and 
neighborhoods 

Some methods 
require that the 
data comes from 
normal distribution 
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Module self-study questions: 
 

1. Define autocorrelation.  
2. Explain the difference between global and local interpolation methods. 
3. What is an exact interpolation method? 
4. Explain semivariance as a measure of spatial dependency. 
5. Define the elements of nugget, range, and sill in a semivariogram. 
6. What is the purpose of fitting a semivariogram with a mathematical model? 
7. How does universal kriging differ from ordinary kriging? 
8. Describe how a cross-validation analysis is performed. 

 
Recommended Readings: 
 
[1] Geostatistical Analyst, ESRI ArcGIS 9.2 Desktop Help, 

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=An_overview_of_Geostatist
ical_Analyst. 

[2] Deterministic and Geostatistical Interpolation methods sections, Geospatial Analysis: Web 
site, M. J. de Smith, M. F. Goodchild, P. A. Longley, 
http://www.spatialanalysisonline.com/output/ . 
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Terms used 
 

�  Geostatistics 
�  Regionalized variables 
�  Auto-correlation 
�  Spatial dependence 
�  Inverse distance weighting 
�  Trend 
�  Global and local polynomial 
�  Splines 
�  Kriging 
�  Regression 
�  Power function 
�  Neighborhood search strategy 
�  Omnidirectional and isotropy 
�  Anisotropy 
�  Semivariance 
�  Variogram 
�  Empirical semivariogram 
�  Lag bins 
�  Auto-covariance 
�  Theoretical, authorized or fitted variogram 
�  Ordinary, simple, universal, regression kriging and co-kriging  
�  Unbiased 
�  Validation  
�  Cross-validation 
�  RMSE 
�  ME 
�  Kriging prediction error 
�  Average kriging prediction error 
�  Root-mean-square standardized prediction error 
�  Error, quantile and probability maps 
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5  Spatial Modelling 
 

In its simplest application, a Geographic Information System (GIS) can be used to organize and 
edit datasets and display the results in the form of a map which can be viewed in digital format or 
output to hardcopy. However, the ability of a GIS to generate models simulating real-world events 
is perhaps its most significant feature. In reality any map is a spatial model as it provides a 
representation of the real world, however, GIS can be used to analyse multiple variables and then 
interpret these variables to simulate or predict potential events. This capability allows us to 
interpolate information for large areas of the landscape. For example, it would be impractical (i.e., 
due to budgetary constraints) to conduct a wildlife habitat field survey for an entire country, 
however, a GIS can be used to model wildlife habitat suitability for large areas. 
 
The following module details some of the basic spatial modelling functions available: 
 

Topic 1:  Modelling spatial problems 
Topic 2:  Classification of spatial models  
Topic 3:  Model types 
Topic 4:  Model builder 
Topic 5:  Model examples 
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5.1 Modelling Spatial Problems 

5.1.1 Overview 
Spatial modeling is the most sophisticated level of spatial analysis.  Models enable us to represent, 
in a simplified form, some aspect of reality. As an abstract or partial representation, models help 
explain or predict how a certain human or natural phenomenon or system works (or could work) in 
the real world. They can be used to represent past, present, or future conditions. Models generally 
consist of a set of spatial variables tied together by an arithmetic operation or set of commands.   

5.1.2 Developing a Model 
Developing a model involves working through a series of conceptual steps, from identifying the 
problem through to implementing the results. It is critical to the development of a model to 
understand the problem at a conceptual level prior to developing the model and therefore following 
the steps detailed below prior to beginning work on the computer is highly recommended. 
 
Step 1: Identify the Problem – In order to establish a model that addresses a specific problem, it is 
necessary to clearly define the problem and goal(s) of the model.  Inherent in this step is 
establishing parameters by asking the following types of questions: 
 

�  What phenomena are being modelled?  
�  Why is the model necessary?  
�  What is the spatial scale and extent of the model (i.e., has the study area been 

defined)?  
�  What time period is pertinent – are we assessing single or multiple time periods? 

 
For example, as part of an environmental impact assessment, a wildlife biologist might wish to 
quantify the amount of wildlife habitat potentially impacted within the zone of influence of a 
proposed development site.  A model, or potentially a series of models, integrating variables 
related to wildlife habitat could be used to solve the problem. When identifying the problem the first 
step in this example would be to identify the species that are potentially present in the project area 
and then select the species that habitat models will be generated for. For example, it may be 
determined that half-a-dozen indicator species can be used to represent the various types of 
wildlife present (e.g., a predator species, a prey species, a bird, a raptor, a furbearer and an 
ungulate). These species then become the phenomena being modelled. In wildlife habitat models 
the spatial extent of the study area is typically represented by the maximum home range extent of 
the species or by the watersheds or ecosystems surrounding the proposed project area. These 
types of boundaries can be used to help define the spatial extents of the model. For the purpose of 
quantifying the amount of habitat that might be lost it would be effective to assess the wildlife 
habitat available in multiple time periods. This would be done by modelling the present conditions 
(baseline) and then comparing those results against a second set of model results depicting the 
habitat available after the project was developed. 
 
Step 2: Break the Problem Down – After you have established the problem and the goals, breaking 
the problem down into its constituent parts helps create more manageable steps.  This involves 
identifying the objectives required to reach your goal, the phenomena involved, and the interactions 
between these phenomena.  Establishing the phenomena allows the modeller to identify and 



Spatial anglysis and modeling 

© National Land Service under the Ministry of Agriculture, 2007 
171 

assemble the datasets required for processing.  Often, a flowchart can be useful in visualizing and 
understanding the spatial and attribute relationships between the constituents. 
 
In our wildlife habitat assessment example, the modeller would assess the habitat requirements 
associated with each species being modelled (e.g., elevation, slope, proximity to water, vegetation) 
and then compile a catalogue of relevant datasets and define how their associated attribute and 
spatial relationships contribute to creating potential habitat for each species. For example, if we 
know a species exists below 500 metres elevation, on slopes less than 10%, within 250 metres to a 
source of freshwater and prefers coniferous forest habitat, we can use the data from a digital 
elevation model (DEM) to identify areas meeting the elevation and slope requirements. A hydrology 
layer would be required to model proximity to water and a vegetation or land cover dataset could 
be used to identify coniferous forest habitats. The intersection of these four data layers allows us to 
identify potential habitats for our species of interest. 
 
Step 3: Develop and Calibrate the Model – Identifying the tools and mathematical operations 
required for analysis is addressed at this stage.  Using the data examined in Step 2, the modeller 
builds the model from these tools and operations.  Subsequent repeated running of the model 
allows the modeller to calibrate the model.  Calibration involves comparing the results of the model 
with its input data and subsequently adjusting the parameters or mathematical operations to arrive 
at more accurate results. 
 
Using a GIS, the modeller would calibrate the model by repeatedly running the model and 
comparing the results to the data.  Adjustments to parameters and operations would be used to 
refine the model results.  
 
In our wildlife habitat map example, the initial results would illustrate potential habitat based on the 
variables considered; we may then want to refine the results based on other criteria. For example, 
perhaps ideal habitat (with a high rating) is within 100 metres of a source of freshwater and habitat 
falling between 100 and 250 metres of freshwater would be assigned a moderate habitat rating. 
 
Step 4: Validate the Model Results – Validation is an evaluation of the model’s capacity for 
accurately predicting the real world phenomena.  This involves comparing the results to field data 
and/or running the model using a different set of data representing conditions that are unlike those 
used in the calibration phase.  If another set of data are not available, a suitable alternative 
consists of splitting the one dataset into two subsets: one for developing and calibrating the model, 
the other for the validation process. 
 

Error Detection 
Visual Inspection – one method for identifying errors is simply by looking at the output to see 
if the results seem logical and consistent and that the output data reflects the input. 
 
Documentation – metadata for input datasets can be used to ensure you are using the data 
appropriately, based on scale, accuracy, attribute values. 
 
Validation Rules – topological and attribute domain ranges are two useful validation rules 
that allow you to check the data against the design. 
 
Consistency of Results – collecting data again and repeating the conversion and processing 
steps can be used to compare the results of a model. 



Spatial anglysis and modeling 

© National Land Service under the Ministry of Agriculture, 2007 
172 

 
Ground Truthing – verifying the results of a model in the field is a dependable method for 
validating data. 
 
Statistics – correlating the model results with a closely associated variable is a statistical 
approach to data verification. 

 
In our example, the wildlife biologist could validate the habitat suitability model results by 
comparing areas having high predicted wildlife habitat ratings with known wildlife habitat locations 
(e.g., denning sites).  
 
Step 5: Implement the Model Results – Once the model has been validated, the modeller can then 
implement the model results.   
 
By using the validated results of the model, our wildlife biologist can determine how much habitat is 
currently present and then overlay the proposed development footprint to determine the amount of 
habitat lost after the proposed development is operation. In addition, the model results could be 
used to identify high priority areas for subsequent field surveying efforts. 
 
Limitations of Modelling 
It is critical to understand that all models have limitations. Factors that may limit the use or 
implementation of a model include:  
 

�  insufficient data – for example data at the required level of detail may not be available 
for all, or part of, the study area 

�  lack of user understanding of the data – for example, many models represent a 
probability analysis rather than an absolute interpretation of the data 

�  inappropriate modelling – in this case the model would be generating incorrect results 
either based on a faulty assumption in the model design or as a result of an error in 
executing the model  
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5.2  Classification of Spatial Models 
Models may be classified by purpose, methodology, or logic, with some classifications falling within 
more than one category. 

5.2.1 Purpose 

Descriptive Model 
A descriptive model describes the current conditions of a real world environment (natural or 
anthropogenic).  A simple thematic map showing land use can be considered a descriptive model 
in that it represents an environmental characteristic that actually occurs on the ground.  Other 
examples include digital elevation models, land use coverage, meteorological maps, and 
vegetation cover maps. 
 
Explanatory Model 
As indicated by their name, explanatory models attempt to explain or account for the occurrence of 
existing phenomena by identifying the factors involved and assessing their relative influence. 
Examples of explanatory models include soil erosion models, ozone depletion, and algae blooms. 
 
Predictive Model 
A predictive (or prescriptive) model predicts (by using the factors identified in an explanatory 
model) where you might find occurrences of a particular environmental phenomena.  For example, 
a habitat capability map, derived from vegetation and slope raster datasets, might be used to 
predict the capacity of an area to support the habitation by a certain animal species. Forecasting 
sea level rise based on changes in climate (e.g., mean temperature values) would be another 
example of a predictive model. 
 
Normative Model 
Normative models attempt to affirm how phenomena (especially network) ought to operate in the 
real world; they recommend optimal solutions for given situations.  Examples include food aid 
distribution, traffic volume levels, and route planning (e.g., travelling salesperson problems). 

5.2.2 Methodology  

Stochastic  
A stochastic (or probabilistic) model is represented by a mathematical equation where at least one 
of its variables or parameters is assumed to contain some level of randomness.  Because of this 
randomness, some degree of error or uncertainty is accepted and expressed as a measure of 
probability along with the predictions of the model.  An example might be an evaluation of the 
probability of the occurrence of landslides due to forest harvest areas. Another example of a 
stochastic model would be the application of a kriging analysis to a series of water quality sampling 
measurements. This would result in an interpolated surface depicting the potential concentration of 
a given contaminant (a predictive map) and the generation of a standard level of error for each 
predicted value. 
 
 
 
Deterministic  
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Contrary to the stochastic method, a deterministic model does not consider randomness to be a 
part of any of the variables or parameters present in the mathematical equation.   

5.2.3 Static or Dynamic  

A static model deals with a phenomenon occurring at a specific point in time, whereas a dynamic 
model is used to consider and highlight the changes of a phenomenon over time and the 
interactions between multiple variables.  For example, a static model might summarize the density 
of road features in analysis units for a particular year.  A dynamic model would build upon that 
model by summarizing the change in road density between successive years. 

5.2.4 Based on Logic  

Inductive  
An inductive model moves from the specific to the general, basing its conclusions on evidence 
observed in previous studies.  Typically, inductive models attempt to identify general conditions or 
rules when important themes and relationships are not well understood.  An archaeological 
potential model that relies strictly on the distribution of existing sites is an example of inductive 
reasoning. 
 
Deductive 
Deductive models derive specific conclusions by using general premises established in scientific 
theory or physical laws - where the variables and their interactions are well understood.  An 
archaeological potential model that uses physical constraints (e.g., slope, aspect, proximity to 
water) to predict the location of sites is an example of deductive logic. 
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5.3  Model Types 

5.3.1 Representation Models 

Binary 
A binary model selects features from layers or multiple raster datasets using logical expressions, 
much like a data query yields a selection set.  The output is a raster or vector layer with binary 
values: spatial features or raster cells that meet the criteria are coded 1 (true) while those features 
that do not agree with the criteria are coded 0 (false). Binary model analysis can be either vector- 
or raster-based: 
 

Vector-Based Binary Model – a vector-based binary model uses overlay operations (e.g., 
intersect, union) to combine the shapes and attributes of the contributing data.   
 
Raster-Based Binary Model – a raster-based binary model extracts desired criteria by 
directly querying multiple raster layers.    

 
The most common application of binary raster data is site selection analysis, where multiple criteria 
are evaluated to determine the most appropriate location for a certain facility or specific land use. 
Two major methods are used to model siting analysis: select one site based on the evaluation of a 
set of pre-selected sites using stringent selection criteria; or the evaluation of all potential sites. 
 
Supposed a mining company wanted to select potential gold mining sites in a valley using the 
following criteria: 
  

�  a minimum ore concentration per cubic metre 
�  minimum open pit size of 10 hectares 
�  minimum flood potential 
�  sites must be less than 30 kilometres from an existing haul road 
�  sites must be on land having less than 10 percent slope 

 
Steps for building the model might include: 

�  gather all contributing datasets required and pre-process in preparation for analysis 
(e.g., from a DEM, create a binary grid depicting areas having a slope value less than 
10 percent and then the conversion of this grid to a vector polygon layer) 

�  create a 30 kilometre buffer zone of all roads 
�  use overlay function (e.g., union) to combine the other layers with the road buffer 
�  query the derivative merged layer to locate which areas satisfy the criteria listed 

above 
 
Ranking 
Also referred to as an index model, a ranking model calculates an index value specific to each unit 
area, with the end result being a ranked map.  Similar to binary models, ranking models evaluate 
multiple criteria through the use of overlay operations and raster arithmetic.  The difference lies in 
the fact that while binary models are given a yes/no value (1 or 0), ranking models apply an index 
value to each unit area. 
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Commonly, a weighted linear combination method is used to determine the index value for each 
unit area.  This method is completed in three steps: 
 

1. Relative Importance – all criteria are evaluated against each other to determine the 
relative importance of each criterion weighted on a scale of 0.0 to 1.0 (0 – 100%). 

2. Standardize Criteria – the relative importance values are standardized between 
criteria. This step facilitates the comparison of multiple variables. 

3. Calculate Index Value – an index value is calculated for each unit area by adding the 
weighted criterion values and then dividing by the total of the weights. 

 
 
Ranking models are used predominantly in creating suitability or vulnerability maps which are 
discussed further in the section on model examples (Section 1.5). 

5.3.2 Process Models  

Process models integrate existing environmental information to simulate a real-world process.  
Because they are used to interpret the interaction of multiple variables and predict what may occur 
in the real world, process models are classified as both dynamic and predictive.  Typically, process 
model analyses are examined in a raster-based GIS environment.  The raster world allows for 
more complex arithmetic computations and standardization between many disparate data sources.  
Soil erosion models, discussed in detail in Section 1.5.4, are good examples of process models. 
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5.4  Model Builder 

5.4.1 Overview 

Model Builder is an interface within ESRI’s ArcGIS product that allows multiple processes to be 
combined facilitating the development of models.  It enables you to visualize work flow (in the form 
of flow chart diagrams) and author and automate geoprocessing tasks that would normally be 
executed in single steps in ArcMap. It also has the resultant advantage of allowing you to 
document the steps involved in the development of a model. While the development of the initial 
version of a model might take a little more time than conducting the steps manually it is extremely 
useful when conducting multiple runs of a model – the model can be run on different data or small 
changes in the model can be made and the model rerun to examine model alternatives and 
assumptions. Processes in Model Builder can be either ArcGIS system tools (ArcTools tool) or 
custom tools created by the modeller.   

5.4.2 How to Build a Model 

The Model Builder interface consists of a window displaying the diagram of the model (the process 
and model elements), a main menu bar containing the functions, and a toolbar that holds the tools 
and functions used to interact with the model elements in the display window (Figure 1). 
 
 
�

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Model Builder Interface. 

Model elements may take the form of input data, geoprocessing tools, or output data layers.  
Processes are constructed by dragging and dropping tools and data into the display window, then 
entering parameters for each tool.  When connections are made between an input data variable 
and a geoprocessing tool, the input data value (i.e. the name of the data layer) is automatically 
entered as the input parameter in the tool’s dialog box. Running the model executes the 
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process(es), based on the layer and tool layout and order of steps as diagrammed by the modeller 
in the display window. 
 
After the desired data and tools have been added and suitably connected in the display window, 
the model can be saved.  The saved model configuration can serve as a template and used with 
different model parameters/data inputs. 
 
The steps used in the gold mine site selection example above could be inserted into Model Builder 
and run as an automated and comprehensive process.  The slope layer and road buffer processes 
could be designed in Model Builder and then connected to a union tool, ultimately yielding a layer 
with appropriate locations for the mine. 
 
It is extremely important when implementing a model using the Model Builder interface to double 
check the processing steps associated with each model element and to review the output data at 
each step to ensure the model is creating the expected results. As with any automated process it 
can often be difficult to determine if a mistake exists within the model and therefore the quality 
assurance and quality control procedures are of great importance. 
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5.5  Model Examples 

5.5.1 Wildlife Habitat  

Habitat Suitability 
The ability to evaluate the past, present and future condition of landscape-scale variables, 
relationships and dependencies help provide an insight into ecosystem health and function. Wildlife 
habitat maps provide a useful planning and management tool as they can serve as an indicator of 
the overall condition of an area while also providing information specific to an individual species. 
For example, they can be used to provide a regional perspective (e.g., as a variable in a 
constraints map) or for a specific purpose (e.g., to help select sampling locations for field survey). 
The maps show the location and extent (availability) of habitat and indicate the relative suitability of 
the habitat through the assignment of a habitat suitability index or class (Figure 2). Terrain, 
elevation, vegetation, hydrological features and human disturbance layers can be integrated and, 
based on habitat requirements, used to map wildlife habitat suitability. For example, a species 
might prefer a specific elevation range, vegetation type and require a 200 metre proximity to a 
freshwater source. All of these variables can be quantified within a GIS and a model developed 
and applied to available data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Example of a Habitat Map. 

The data needed to perform this type of analysis is as follows: 
�  Ecological Land Classification (ELC) mapping and/or vegetation data 
�  Terrain 

o Slope  
o Aspect 
o Elevation 

�  Base map information 
o Hydrology 
o Human disturbance 
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�  Discipline knowledge 
o Wildlife experts 
o GIS and data integration 
 

Habitat Fragmentation 
The mapping of habitat fragmentation is another tool to help manage environmental change. 
Habitat fragmentation maps integrate wildlife habitat map layers with maps depicting the extent of 
human disturbance to illustrate the size of available habitat patches and areas of continuous 
habitat. The aggregate maps help us quantify the amount of viable habitat and the potential loss 
resulting from existing and/or proposed development activities. They help us identify: the total area 
and average patch size of habitat; potential increases in the amount of edge habitat (this can be a 
positive or negative factor depending on the species of interest); the potential decrease in the 
amount of interior habitat; patches of habitat that have the potential to become isolated; and the 
potential increase in smaller habitat patches.  
 
The results can be used to help identify the locations of major habitat reservoirs and habitat 
refuges that are essential to the continued success of the species. A habitat reservoir is a large 
area (the size of which is dependent on the species of interest) of habitat that has sufficient size 
and ecological integrity to support a range of native species including species that need interior 
habitats. A habitat refuge is a small patch of habitat that provides food, shelter and other needs for 
wildlife. It may include human-modified ecosystems. Refuges generally are not large enough to 
maintain the genetic diversity of a population but may act as important ‘stepping stones’ to habitat 
reservoirs for species and for maintaining ecological functions. 
 
The data needed to perform this type of analysis is as follows: 

�  Ecological Land Classification mapping and/or vegetation data 
�  Wildlife habitat maps 
�  Terrain (optional) 

o Slope  
o Aspect 
o Elevation 

�  Base map information 
o Human disturbance 

�  Discipline knowledge 
o Wildlife experts 
o GIS and data integration 

5.5.2 Locational Suitability Models  

Suitability Maps 
Raster reclassification (changing cell values) is sometimes done with the aim of assigning rank or 
weighting to cells to convey a sense of importance, sensitivity, or hierarchy.  This process is often 
used in the creation of a suitability map (e.g., a habitat suitability model based on multiple input 
raster layers with values ranging from 1-6 [low to high]) (Figure 3). 
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Step 1 - Input Datasets: determine what datasets are 
needed as input layers to the model 
 
 
 
 
 
 
Step 2 - Create Derivative Datasets: generate offshoot 
rasters from original data (e.g., slope and aspect 
datasets can be derived from an elevation raster) 
 
 
 
 
 
Step 3 - Reclassify: reclassify input datasets to a 
common value range so that data can be compared 
and combined on an even scale (playing field) 
 
 
 
 
 
Step 4 - Assign Weights and Combine Rasters: give 
added weight to more influential datasets and combine 
to create a suitability raster  
 
 
 
 

Figure 3. Reclassification - Creating a Suitability Map. 

Inherent in the reclassification process is the output of a new raster as illustrated in the example 
above.  Reclassification is predominantly used to reduce the number of output categories in 
preparation for combining data (overlay analysis). 
 
Constraints Mapping 
Constraints mapping is a type of suitability map. The analysis identifies opportunities and 
restrictions (constraints) to project construction. The process involves assembling a variety of 
different spatial data layers (e.g., terrain and topography, wildlife habitat, slope, protected areas, 
soils, heritage resource information), assigning the data in each layer a sensitivity rating (based on 
scientific and local knowledge), and combining the layers to develop a single map that integrates 
all of the source data layers. The resultant derivative map product identifies and synthesizes the 
complex relationships between different environmental datasets, while also considering location 
and operational limitations posed by project design. The constraints map serves as a visual 
decision-support tool that delineates areas determined to be of environmental and cultural 
importance based on the occurrence of sensitive landscape features. The constraints designation 
can be either avoidance of the site (e.g., a ‘no-go’ area) or a graduated level of concern. Ideally the 
constraints map helps guide the placement of surface facilities into the least constraining locations, 
thereby lowering the environmental and cultural impact of industrial activities. 
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The type of derivative surface that is created depends on the values and weights applied to the 
input data layers.  For example, corridor delineations depend on slope and ecological land 
classification (ELC) type for defining where ideal animal corridors are present within the landscape, 
while accessibility mapping will depend on slope and distance from communities. 
 
Overview 
Constraints mapping identifies opportunities and restrictions to project siting by integrating a series 
of spatial layers into a single map. Figure 4 below provides an overview of the constraints mapping 
process. 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Example Sensitivity Layer Structure. 

The implementation of constraints mapping is tiered and the definitions discussed here are directly 
related to the modeling methodology used and described below. 
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�  The constraints map represents the visual result or output of the constraint model. The 
constraints map is created from a mathematical combination of any number of sensitivity layers.  

�  A sensitivity layer represents the sensitivity of a given discipline or subject of interest (e.g., 
wildlife, traditional knowledge or vegetation) relative to the objective of minimizing 
environmental and cultural impacts while project siting. Each sensitivity layer is the result of 
combining input data from potentially many GIS datasets that depict features on the landscape 
such as roads, forest cut blocks or wildlife habitat. 

 
The constraints mapping process encompasses the following general steps: 
 

1. Data preprocessing or modeling (e.g., creation of a slope surface or wildlife models); 
2. Assigning constraint characteristics (zone of influence buffers, sensitivity values and 

combination rules); 
3. Aggregating input data to create sensitivity layers; 
4. Assigning weighting factors to sensitivity layers; and 
5. Combine sensitivity layers to derive the constraints map. 

 
GIS Data Preparation 
GIS datasets are grouped according to their constraints characteristics. For instance, a polygonal 
wetland dataset would likely contain polygons identifying the spatial location of different types of 
areal wetland features. These may include unique types of wetlands such as; marshes, bogs, fens 
and swamps if these features are to be rated differently. Alternatively, the unique features could be 
grouped in a single class (e.g., all wetlands) if the rating values are consistent between the wetland 
types. 
 
To be incorporated into the model, each feature in a GIS dataset must be assigned a sensitivity 
value - a constraint coefficient. The value assigned represents the sensitivity of a particular feature 
to the constraints objective. For instance, being interested in minimizing the social and cultural 
impacts of siting a project, we are aware of the importance of wetlands to wildlife and ecosystem 
health – particularly marshes and swamps. These wetlands are therefore assigned a relatively high 
sensitivity value (which recognizes that development may be more constrained where these 
features exist). In the constraints model, the possible sensitivity values ranged from zero (0.0) to 
one (1.0). A value of zero represents no sensitivity and a value of one represents the highest 
sensitivity.  

 
Building Sensitivity Layers 
Each sensitivity layer is produced by combining one or more GIS datasets. In some instances it is 
found that features from different GIS datasets overlap each other and have different sensitivity 
values (Figure 5). In the creation of a ‘Wetlands and Riparian’ sensitivity layer for example, it is 
common for a wetland buffer with a sensitivity value of 1.0 to overlap an intermittent stream buffer 
with a sensitivity value of 0.5. Where GIS features contributing to the same sensitivity layer overlap, 
the maximum sensitivity is assigned to the calculated sensitivity layer. In this case, the value of 1.0 
was assigned.  
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Figure 5 Example of Overlapping Coefficients. 

All GIS datasets are combined using this ‘conservative’ rule where the maximum sensitivity of all 
inputs to a sensitivity layer value was used.  

 
Building the Constraints Map 
The final constraints map is produced by combining the sensitivity layers. The layers are combined 
using linear weighted summation. Each sensitivity layer is assigned a weight that specifies its 
relative importance with respect to the other sensitivity layers. The weights are used to specify how 
much each sensitivity layer should contribute to the model. The total of all weights must sum to 1.0 
(or 100%). Table 1 presents an example of how a number of sensitivity layers might be weighted in 
the constraints mapping process. 
 

Table 1. Sensitivity Layer Weighting 

Sensitivity Layer Weight 
Wetlands and Riparian 0.492 
Key Wildlife Habitat 0.268 
Disturbance 0.140 
Vegetation 0.053 
Slope 0.047 

Total 1.000 

 

 
For a given point on the constraints map, the resultant constraint value is calculated as follows:  
 

Constraint Map Unit Value = (wetland and riparian sensitivity value x 0.492) + (key wildlife 
habitat sensitivity value x 0.268) + (disturbance sensitivity value x 0.140) + (vegetation 
sensitivity value x 0.053) + (slope x 0.047). 
 

The following is an example calculation for a map unit (e.g., a grid cell) where the final constraint 
value was determined to be 0.707. The example Sensitivity Value is the value for that sensitivity 
layer at a given pixel location.  A Weighted Sensitivity is calculated for each map unit in the study 
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area. Weighted Sensitivity values range from 0.0 (no constraints) to 1.0 (fully constrained). The 
constraint value represents the sum of the weighted sensitivity values for a given map unit. 

Table 2. Constraints Calculation Example 

Sensitivity Layer Sensitivity Value Weighting Value Weighted Sensitivity 
Wetlands and Riparian 1 0.492 0.492 
Key Wildlife Habitat 0 0.268 0.000 
Disturbance 1 0.140 0.140 
Vegetation 0.8 0.053 0.042 

Terrain 0.7 0.047 0.033 

 
 TOTAL 

 (Constraint Value) 0.707 
Figure 6 depicts an example of a constraints map. Brown areas are the most constrained while 
dark green areas are the least constrained. In this example, it is apparent that the wetland and 
riparian features contributed heavily to the final constraints map, since the buffered hydrological 
features are clearly visible in the resultant surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Example Constraints Map. 

Assumptions and Limitations 
Constraints maps should be interpreted with care due to limitations of the model. The most obvious 
limitation is that individual sensitivity values (for individual features on the landscape) are lost in the 
final output. Because inputs from many GIS data sources are included in the output, there is a 
dilution of sensitivity of individual features. This happens in two ways: 
 

1. For a sensitivity layer, the sensitivity at a given location on the landscape is determined by 
choosing the highest of all sensitivities from the input GIS data. That means that if there 
were three features in the same area all with a sensitivity of 1.0, they would be considered 
no more important than an area were there was only one feature with a sensitivity of 1.0. 
Both areas would be assigned a sensitivity of 1.0. 

2. The weighting mechanism used in the final combination of sensitivity layers can dilute the 
final constraint value. If, for example, the Wetlands and Riparian sensitivity layer had been 
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weighted much lower (e.g., 0.10), the other layers would have contributed much more to the 
final result and the constraints map would be much different. The relative importance (or 
lack thereof) of the wetland and riparian features would not be evident in the final output. 

 
Application 
Constraints mapping can provide information on environmental constraints as per the example 
detailed, however, it can also be used to identify opportunities for siting a project.  Ideally two 
separate analyses would be run in parallel: the constraints analysis examining environmental 
sensitivities; and an opportunities analysis examining existing development and terrain conditions 
to identify the ‘positive’ factors associated with a given location (e.g., close proximity to existing 
access rights-of-way, low slope, minimum number of road-stream crossings). Potentially the results 
of the two approaches can either be used independently or integrated into a single map that 
identifies optimal locations based on both engineering-based siting requirements and minimizing 
environmental impact.  The primary goal of the constraints process is to provide information for 
more informed decision making, thereby minimizing the effects of industrial development. The 
constraints map helps effectively identify potential, low impact development sites and, while field 
verification of these sites is still a requirement, the constraints map allow the effort associated with 
field programs to be focussed on a much smaller subset of the landscape. 

5.5.3 Road Density 

Road density provides a useful environmental indicator to help assess the existing and potential 
impacts of human disturbance on wildlife and fish habitat. It helps us measure the amount of 
activity in an area and the level of habitat fragmentation. Typically, road density values are 
summarized as kilometres of road per square kilometre or alternatively the road density in 
summarized for an area (e.g., by watershed or by a jurisdictional boundary) to facilitate comparison 
between different regions (Figure 7). When conducted for multiple points in time (e.g., the 1980s, 
1990s and 2000s) the results allow us to compare development trends over time and potentially 
identify those areas under stress.  
 
A road density analysis can be conducted with all roads contributing equally to the final density 
statistic or, alternatively, a weighting can be applied to roads with a greater width or a higher traffic 
volume resulting in a weighted road density measurement. 
 
 
 
 
 
 
 
 

Figure 7. Road Density in Anyksciai and Vilnius 
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The Universal Soil Loss Equation (USLE) is a conventional model of soil erosion that takes into 
account climate characteristics, soil properties, topography, surface conditions, and human 
activities.  It predicts the average soil loss attributed to the runoff from various slopes associated 
with agriculture, rangeland, and other managed land systems (e.g., construction sites). 
 

The equation is A = R K L S C P  
where: 

 
A = average soil loss (e.g., tons/acre/year) 
R = rainfall runoff erosivity factor (derived from the energy in an average rainfall) 
K = soil erodibility factor (average soil loss in tons/acre/year at a standard slope length and 
steepness) 
L = slope length factor 
S = slope steepness factor 
C = crop management factor (effect of crop management factors on soil erosion) 
P = support practice factor (determined by contouring, strip cropping, terracing, and 
subsurface drainage) 

 
Each of the above factors contributes to a simulation of conditions that affect the severity of soil 
erosion at a particular location. 

 
GIS enables the model to incorporate the spatial portion of the equation: 
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�  precipitation data to serve as the rainfall runoff erosivity factor (R) 
�  soil property map generates the soil erodibility factor (K) (Figure 8). 

 

 

Figure 8. Lithuanian Soil Property Map 

�  Digital Elevation Models are used to calculate the slope length (L) and steepness (S) for 
each cell 

�  a land cover/land use maps may be used as a source for crop management practices (C) 
and support practices (P) (Figure 9). 
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reclassify the data into equivalent units, combine the input data using the Universal Soil Loss 
Equation, and generate a derivative soil erosion potential layer.  
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Module Self-Study Questions: 
 

1. What is a model, and what are the limitations of models? 

2. What are the ways in which model results may be validated? 

3. Describe the nature of a binary model.  What types of problems might one use a binary model 
to solve? 

4. Is the Road Density model presented in section 5.5.3 an example of a Descriptive, Explanatory, 
Predictive or Normative model?  Why? 

5. Is the Universal Soil Loss Equation presented in section 5.5.4 an example of a Representation 
or a Process model?  Why? 
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